Phase change materials based on chalcogenide alloys are of great technological importance because of their use in optical data storage devices (DVDs) and electronic non-volatile memories of new concept, the Phase Change Memory cell (PCM). These applications rely on a fast (50 ns) and reversible change between the crystalline and the amorphous phases upon heating. The two phases correspond to the two states of the memory that can be discriminated thanks to a large difference in their optical and electronic properties. Although Ge2Sb2Te5 (GST) is the compound presently used as active layer in PCMs, alternative materials with a higher crystallization temperature are under scrutiny in order to increase the thermal stability of the PCM devices. In this respect, we analysed, by means of ab-initio molecular dynamics simulations, different high crystallization temperature alloys with composition In3Sb1Te2, In13Sb11Te3 and Ga4Sb6Te3, which have been experimentally proposed as substitute of GST. However, the structural properties and the microscopical reason of the high thermal stability of the amorphous phases of these compounds is still unclear. We, thus, generated models of the amorphous phase of few hundreds of atoms by quenching from the melt in few hundreds of ps aiming at finding out a relation between the structural properties of the amorphous phase and the high crystallization temperature of these alloys. The topology of our amorphous models turned out to be mostly tetrahedral which differs from the octahedral-like geometry of the crystalline phases. The presence of tetrahedral structures in the amorphous which are absent in the crystalline phase, probably hinders the crystallization process resulting in a higher crystallization temperature with respect to GST which display a mostly octahedral-like structures in both amorphous and the crystalline phase. In the second part of this work we addressed the issue of the resistance drift phenomenon, which consists of an increase of the electrical resistance of the amorphous phase with time. This effect is detrimental in PCMs since it changes the electrical characteristics of the devices. This process is believed to be due to an aging of the amorphous phase which modifies during time the defect states in the proximity of the valence and conduction band edges which control the electrical conductivity. The microscopic origin of the structural relaxations leading to the drift is still unknown. To address this problem, we generated large models (about two thousand atoms) of amorphous GeTe by quenching from the melt in 100 ps with classical molecular dynamics simulations by using a neural-network potential. Once relaxed by first principles, the models showed the presence of several in-gap states localized on chains of Ge atoms. After an annealing at 500 K, performed to accelerate the drift process, Ge chains and homopolar Ge-Ge bonds reduce in number resulting in a band gap widening and a reduction of the Urbach tails at the band edges which can account for the increase of the resistance. We thus propose that the resistance drift originates from structural relaxations leading to the removal of Ge chains.

I materiali a cambiamento di fase sono calcogenuri a base di tellurio di notevole interesse tecnologico per la realizzazione di memorie ottiche (DVD) e di memorie elettroniche non volatili di nuova concezione, le memorie a cambiamento di fase o PCM. Questi dispositivi si basano su una veloce (50 ns) e reversibile transizione di fase amorfo-cristallo indotta per riscaldamento. Le due fasi corrispondono ai due stati di memoria che possono essere distinti grazie alla grande differenza tra le proprietà ottiche ed elettroniche dell'amorfo e quelle del cristallo. Nonostante il Ge2Sb2Te5 (GST) sia il materiale attualmente usato nelle PCM, si stanno studiando nuovi materiali con una temperatura di cristallizzazione più alta per aumentare la stabilità termica delle PCM. A questo proposito in questa tesi sono state studiate, attraverso simulazioni di dinamica molecolare ab-initio, diverse leghe ad alta temperatura di cristallizzazione con composizione In3Sb1Te2, In13Sb11Te3 e Ga4Sb6Te3. Queste leghe sono state studiate sperimentalmente e proposte come sostituti del GST, ma le proprietà strutturali e l'origine microscopica dell'elevata temperatura di cristallizzazione della fase amorfa di questi composti non è ancora del tutto chiara. Sono stati, quindi, generati modelli di qualche centinaio di atomi della fase amorfa raffreddando dal liquido in centinaia di ps allo scopo di trovare una relazione tra la struttura dell'amorfo e l'alta temperatura di cristallizzazione di queste leghe. La topologia di legame dei modelli amorfi risulta principalmente tetraedrica, molto diversa dalla geometria della fase cristallina che presenta invece intorni ottaedrici. La presenza di strutture tetraedriche nell'amorfo, assenti invece nella fase cristallina, può quindi costituire un ostacolo alla cristallizzazione con l'effetto di innalzare la temperatura di cristallizzazione rispetto al GST che presenta una geometria di legame prevalentemente ottaedrica sia nell'amorfo che nel cristallo. Nella seconda parte di questo lavoro è stato affrontato il problema del drift, che consiste in un aumento della resistenza elettrica della fase amorfa con il tempo. Questo fenomeno rappresenta un problema nelle celle PCM in quanto modifica le caratteristiche elettriche del dispositivo; tuttavia, manca ancora una spiegazione completa del meccanismo microscopico alla base di questo processo. Il drift sembra però legato al fenomeno del rilassamento strutturale che si verifica nei semiconduttori amorfi e che modifica nel tempo gli stati di difetto in prossimità degli edge delle bande di valenza e di conduzione, da cui dipende la conduzione nella fase amorfa. Per studiare il fenomeno del drift sono stati generati modelli di grandi dimensioni (circa duemila atomi) di GeTe amorfo raffreddando dal liquido in 100 ps attraverso simulazioni di dinamica molecolare classica con un potenziale Neural-Network. Una volta rilassati ab-initio, i modelli presentano diversi stati nel gap localizzati su catene di atomi di Ge. Dopo aver riscaldato i modelli a 500 K in modo da accelerare il processo di drift, si osserva una riduzione del numero di catene di Ge e di legami omopolari Ge-Ge con un conseguente allargamento del gap e riduzione dell'ampiezza delle code di Urbach che possono giustificare un aumento della resistenza. Si propone quindi che il drift sia dovuto al rilassamento strutturale della fase amorfa che porta alla riduzione delle catene di legami omopolari di Ge.

(2015). First principles simulations of phase change materials for data storage. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).

First principles simulations of phase change materials for data storage

GABARDI, SILVIA
2015

Abstract

Phase change materials based on chalcogenide alloys are of great technological importance because of their use in optical data storage devices (DVDs) and electronic non-volatile memories of new concept, the Phase Change Memory cell (PCM). These applications rely on a fast (50 ns) and reversible change between the crystalline and the amorphous phases upon heating. The two phases correspond to the two states of the memory that can be discriminated thanks to a large difference in their optical and electronic properties. Although Ge2Sb2Te5 (GST) is the compound presently used as active layer in PCMs, alternative materials with a higher crystallization temperature are under scrutiny in order to increase the thermal stability of the PCM devices. In this respect, we analysed, by means of ab-initio molecular dynamics simulations, different high crystallization temperature alloys with composition In3Sb1Te2, In13Sb11Te3 and Ga4Sb6Te3, which have been experimentally proposed as substitute of GST. However, the structural properties and the microscopical reason of the high thermal stability of the amorphous phases of these compounds is still unclear. We, thus, generated models of the amorphous phase of few hundreds of atoms by quenching from the melt in few hundreds of ps aiming at finding out a relation between the structural properties of the amorphous phase and the high crystallization temperature of these alloys. The topology of our amorphous models turned out to be mostly tetrahedral which differs from the octahedral-like geometry of the crystalline phases. The presence of tetrahedral structures in the amorphous which are absent in the crystalline phase, probably hinders the crystallization process resulting in a higher crystallization temperature with respect to GST which display a mostly octahedral-like structures in both amorphous and the crystalline phase. In the second part of this work we addressed the issue of the resistance drift phenomenon, which consists of an increase of the electrical resistance of the amorphous phase with time. This effect is detrimental in PCMs since it changes the electrical characteristics of the devices. This process is believed to be due to an aging of the amorphous phase which modifies during time the defect states in the proximity of the valence and conduction band edges which control the electrical conductivity. The microscopic origin of the structural relaxations leading to the drift is still unknown. To address this problem, we generated large models (about two thousand atoms) of amorphous GeTe by quenching from the melt in 100 ps with classical molecular dynamics simulations by using a neural-network potential. Once relaxed by first principles, the models showed the presence of several in-gap states localized on chains of Ge atoms. After an annealing at 500 K, performed to accelerate the drift process, Ge chains and homopolar Ge-Ge bonds reduce in number resulting in a band gap widening and a reduction of the Urbach tails at the band edges which can account for the increase of the resistance. We thus propose that the resistance drift originates from structural relaxations leading to the removal of Ge chains.
BERNASCONI, MARCO
Phase change materials, phase change memories, first principles simulations, molecular dynamics
Materiali a cambiamento di fase, memorie a cambiamento di fase, simulazioni da principi primi, dinamica molecolare
FIS/03 - FISICA DELLA MATERIA
English
23-feb-2015
Scuola di dottorato di Scienze
NANOSTRUTTURE E NANOTECNOLOGIE - 33R
27
2013/2014
open
(2015). First principles simulations of phase change materials for data storage. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).
File in questo prodotto:
File Dimensione Formato  
PhD_unimib_702735.pdf

accesso aperto

Descrizione: Tesi di dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 12.63 MB
Formato Adobe PDF
12.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/76292
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact