We consider the nonautonomous Ornstein-Uhlenbeck operator in some weighted spaces of continuous functions in R^N.We prove sharp uniform estimates for the spatial derivatives of the associated evolution operator P_{s,t} , which we use to prove optimal Schauder estimates for the solution to some nonhomogeneous parabolic Cauchy problems associated with the Ornstein-Uhlenbeck operator. We also prove that, for any t > s, the evolution operator P_{s,t} is compact in the previous weighted spaces.

Addona, D. (2013). Nonautonomous Ornstein-Uhlenbeck operators in weighted spaces of continuous functions. SEMIGROUP FORUM, 87(3), 509-536 [10.1007/s00233-013-9495-6].

Nonautonomous Ornstein-Uhlenbeck operators in weighted spaces of continuous functions

ADDONA, DAVIDE
2013

Abstract

We consider the nonautonomous Ornstein-Uhlenbeck operator in some weighted spaces of continuous functions in R^N.We prove sharp uniform estimates for the spatial derivatives of the associated evolution operator P_{s,t} , which we use to prove optimal Schauder estimates for the solution to some nonhomogeneous parabolic Cauchy problems associated with the Ornstein-Uhlenbeck operator. We also prove that, for any t > s, the evolution operator P_{s,t} is compact in the previous weighted spaces.
Articolo in rivista - Articolo scientifico
Nonautonomous parabolic equations, Weighted spaces of continuous functions, Uniform estimates, Nonhomogeneous Cauchy problems, Optimal regularity results, Compactness
English
2013
87
3
509
536
reserved
Addona, D. (2013). Nonautonomous Ornstein-Uhlenbeck operators in weighted spaces of continuous functions. SEMIGROUP FORUM, 87(3), 509-536 [10.1007/s00233-013-9495-6].
File in questo prodotto:
File Dimensione Formato  
0.O-U_weighted_spaces.pdf

Solo gestori archivio

Descrizione: Articolo principale
Dimensione 862.95 kB
Formato Adobe PDF
862.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/72698
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact