We present a new min-max approach to the search of multiple T{periodic solutions to a class of fourth order equations u(iv)(t) cu"(t) = f(t, u(t)); t is an element of [0, T], where f( t; u) is continuous, T-periodic in t and satisfies a superlinearity assumption when \u\ --> infinity. For every n is an element of N, we prove the existence of a T{periodic solution having exactly 2n zeroes in (0, T].

Conti, M., Terracini, S., Verzini, G. (2004). Infinitely many solutions to fourth order superlinear periodic problems. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 356(8), 3283-3300 [10.1090/S0002-9947-03-03514-1].

Infinitely many solutions to fourth order superlinear periodic problems

TERRACINI, SUSANNA;
2004

Abstract

We present a new min-max approach to the search of multiple T{periodic solutions to a class of fourth order equations u(iv)(t) cu"(t) = f(t, u(t)); t is an element of [0, T], where f( t; u) is continuous, T-periodic in t and satisfies a superlinearity assumption when \u\ --> infinity. For every n is an element of N, we prove the existence of a T{periodic solution having exactly 2n zeroes in (0, T].
Articolo in rivista - Articolo scientifico
oscillating solutions; fourth order equations; boundary value problems; variational methods
English
2004
356
8
3283
3300
none
Conti, M., Terracini, S., Verzini, G. (2004). Infinitely many solutions to fourth order superlinear periodic problems. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 356(8), 3283-3300 [10.1090/S0002-9947-03-03514-1].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/7197
Citazioni
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 19
Social impact