In this paper we prove that any complete locally conformally flat quasi-Einstein manifold of dimension nf3 is locally a warped product with n ≥ 1-dimensional fibers of constant curvature. This result includes also the case of locally conformally flat gradient Ricci solitons. © Walter de Gruyter Berlin Boston 2013.
Catino, G., Mantegazza, C., Mazzieri, L., Rimoldi, M. (2013). Locally conformally flat quasi-Einstein manifolds. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013(675), 181-189 [10.1515/CRELLE.2011.183].
Locally conformally flat quasi-Einstein manifolds
RIMOLDI, MICHELE
2013
Abstract
In this paper we prove that any complete locally conformally flat quasi-Einstein manifold of dimension nf3 is locally a warped product with n ≥ 1-dimensional fibers of constant curvature. This result includes also the case of locally conformally flat gradient Ricci solitons. © Walter de Gruyter Berlin Boston 2013.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.