We propose a new strategy for determining the equation of state of a relativistic thermal quantum field theory by considering it in a moving reference system. In this frame, an observer can measure the entropy density of the system directly from its average total momentum. In the Euclidean path integral formalism, this amounts to computing the expectation value of the off-diagonal components T0k of the energy-momentum tensor in the presence of shifted boundary conditions. The entropy is, thus, easily measured from the expectation value of a local observable computed at the target temperature T only. At large T, the temperature itself is the only scale which drives the systematic errors, and the lattice spacing can be tuned to perform a reliable continuum limit extrapolation while keeping finite-size effects under control. We test this strategy for the four-dimensional SU(3) Yang-Mills theory. We present precise results for the entropy density and its step-scaling function in the temperature range 0.9Tc-20Tc. At each temperature, we consider four lattice spacings in order to extrapolate the results to the continuum limit. As a by-product, we also determine the ultraviolet finite renormalization constant of T0k by imposing suitable Ward identities. These findings establish this strategy as a solid, simple, and efficient method for an accurate determination of the equation of state of a relativistic thermal field theory over several orders of magnitude in T. © 2014 American Physical Society.

Giusti, L., Pepe, M. (2014). Equation of state of a relativistic theory from a moving frame. PHYSICAL REVIEW LETTERS, 113(3) [10.1103/PhysRevLett.113.031601].

Equation of state of a relativistic theory from a moving frame

GIUSTI, LEONARDO
Primo
;
PEPE, MICHELE
Secondo
2014

Abstract

We propose a new strategy for determining the equation of state of a relativistic thermal quantum field theory by considering it in a moving reference system. In this frame, an observer can measure the entropy density of the system directly from its average total momentum. In the Euclidean path integral formalism, this amounts to computing the expectation value of the off-diagonal components T0k of the energy-momentum tensor in the presence of shifted boundary conditions. The entropy is, thus, easily measured from the expectation value of a local observable computed at the target temperature T only. At large T, the temperature itself is the only scale which drives the systematic errors, and the lattice spacing can be tuned to perform a reliable continuum limit extrapolation while keeping finite-size effects under control. We test this strategy for the four-dimensional SU(3) Yang-Mills theory. We present precise results for the entropy density and its step-scaling function in the temperature range 0.9Tc-20Tc. At each temperature, we consider four lattice spacings in order to extrapolate the results to the continuum limit. As a by-product, we also determine the ultraviolet finite renormalization constant of T0k by imposing suitable Ward identities. These findings establish this strategy as a solid, simple, and efficient method for an accurate determination of the equation of state of a relativistic thermal field theory over several orders of magnitude in T. © 2014 American Physical Society.
Articolo in rivista - Articolo scientifico
Physics and Astronomy (all)
English
2014
113
3
031601
none
Giusti, L., Pepe, M. (2014). Equation of state of a relativistic theory from a moving frame. PHYSICAL REVIEW LETTERS, 113(3) [10.1103/PhysRevLett.113.031601].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/63354
Citazioni
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 16
Social impact