We show that a constant amount of space is sufficient to simulate a polynomial-space bounded Turing machine by P systems with active membranes. We thus obtain a new characterisation of PSPACE, which raises interesting questions about the definition of space complexity for P systems. We then propose an alternative definition, where the size of the alphabet and the number of membrane labels of each P system are also taken into account. Finally we prove that, when less than a logarithmic number of membrane labels is available, moving the input objects around the membrane structure without rewriting them is not enough to even distinguish inputs of the same length

Leporati, A., Manzoni, L., Mauri, G., Porreca, A., Zandron, C. (2014). Constant-space P systems with active membranes. FUNDAMENTA INFORMATICAE, 134(1-2), 111-128 [10.3233/FI-2014-1094].

Constant-space P systems with active membranes

LEPORATI, ALBERTO OTTAVIO;MANZONI, LUCA;MAURI, GIANCARLO;PORRECA, ANTONIO ENRICO;ZANDRON, CLAUDIO
2014

Abstract

We show that a constant amount of space is sufficient to simulate a polynomial-space bounded Turing machine by P systems with active membranes. We thus obtain a new characterisation of PSPACE, which raises interesting questions about the definition of space complexity for P systems. We then propose an alternative definition, where the size of the alphabet and the number of membrane labels of each P system are also taken into account. Finally we prove that, when less than a logarithmic number of membrane labels is available, moving the input objects around the membrane structure without rewriting them is not enough to even distinguish inputs of the same length
Articolo in rivista - Articolo scientifico
Computational Theory and Mathematics; Theoretical Computer Science
English
2014
134
1-2
111
128
open
Leporati, A., Manzoni, L., Mauri, G., Porreca, A., Zandron, C. (2014). Constant-space P systems with active membranes. FUNDAMENTA INFORMATICAE, 134(1-2), 111-128 [10.3233/FI-2014-1094].
File in questo prodotto:
File Dimensione Formato  
Paper-no-highlight.pdf

accesso aperto

Descrizione: Post-print articolo
Dimensione 284.08 kB
Formato Adobe PDF
284.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/59281
Citazioni
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
Social impact