We investigate how to obtain various flows of Kãhler metrics on a fixed manifold as variations of Kãhler reductions of a metric satisfying a given static equation on a higher dimensional manifold. We identify static equations that induce the geodesic equation for the Mabuchiâs metric, the Calabi flow, the pseudo-Calabi flow of Chen-Zheng and the Kãhler-Ricci flow. In the latter case we rederive the V-soliton equation of La Nave-Tian.

Arezzo, C., DELLA VEDOVA, A., La Nave, G. (2015). Geometric flows and Kähler reduction. JOURNAL OF SYMPLECTIC GEOMETRY, 13(2), 497-525 [10.4310/JSG.2015.v13.n2.a8].

Geometric flows and Kähler reduction

DELLA VEDOVA, ALBERTO
;
2015

Abstract

We investigate how to obtain various flows of Kãhler metrics on a fixed manifold as variations of Kãhler reductions of a metric satisfying a given static equation on a higher dimensional manifold. We identify static equations that induce the geodesic equation for the Mabuchiâs metric, the Calabi flow, the pseudo-Calabi flow of Chen-Zheng and the Kãhler-Ricci flow. In the latter case we rederive the V-soliton equation of La Nave-Tian.
Articolo in rivista - Articolo scientifico
Mathematics - Differential Geometry; Mathematics - Differential Geometry; Mathematics - Symplectic Geometry
English
2015
13
2
497
525
reserved
Arezzo, C., DELLA VEDOVA, A., La Nave, G. (2015). Geometric flows and Kähler reduction. JOURNAL OF SYMPLECTIC GEOMETRY, 13(2), 497-525 [10.4310/JSG.2015.v13.n2.a8].
File in questo prodotto:
File Dimensione Formato  
5_GeomFlows.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 391.42 kB
Formato Adobe PDF
391.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/56506
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
Social impact