Let Gamma be a smooth compact convex planar curve with are length dm and let d sigma = psi dm where psi is a cutoff function. For Theta is an element of SO(2) set sigma (Theta)(E) = sigma(ThetaE) for any measurable planar set E. Then. for suitable functions f in R-2, the inequality {integral (SO(2)) [integral (R2) /(f) over cap(xi)/(2) d sigma (Theta)(xi)](s/2) d Theta}(1/s) less than or equal to c \\f\\(p) represents an average over rotations, of the Stein-Tomas restriction phenomenon. We obtain best possible indices for the above inequality when Gamma is any convex curve and under various geometric assumptions.

Brandolini, L., Iosevich, A., Travaglini, G. (2001). Spherical means and the restriction phenomenon. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 7(4), 359-372 [10.1007/BF02514502].

Spherical means and the restriction phenomenon

TRAVAGLINI, GIANCARLO
2001

Abstract

Let Gamma be a smooth compact convex planar curve with are length dm and let d sigma = psi dm where psi is a cutoff function. For Theta is an element of SO(2) set sigma (Theta)(E) = sigma(ThetaE) for any measurable planar set E. Then. for suitable functions f in R-2, the inequality {integral (SO(2)) [integral (R2) /(f) over cap(xi)/(2) d sigma (Theta)(xi)](s/2) d Theta}(1/s) less than or equal to c \\f\\(p) represents an average over rotations, of the Stein-Tomas restriction phenomenon. We obtain best possible indices for the above inequality when Gamma is any convex curve and under various geometric assumptions.
Articolo in rivista - Articolo scientifico
spherical means; restriction of the Fourier transform
English
2001
7
4
359
372
none
Brandolini, L., Iosevich, A., Travaglini, G. (2001). Spherical means and the restriction phenomenon. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 7(4), 359-372 [10.1007/BF02514502].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/5564
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
Social impact