Abstract. The classical Riemann localization principle states that if an integrable function of one variable vanishes in an open set, then its Fourier expansion converges to zero in this set. This principle does not immediately extend to several dimensions, and here we study the Hausdorff dimension of the sets of points where localization for Riesz means of Fourier expansions may fail.

Colzani, L., Gigante, G., Vegas, A. (2014). Localization for Riesz means of Fourier expansions. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 366(12), 6229-6245 [10.1090/S0002-9947-2014-06076-5].

Localization for Riesz means of Fourier expansions

COLZANI, LEONARDO;
2014

Abstract

Abstract. The classical Riemann localization principle states that if an integrable function of one variable vanishes in an open set, then its Fourier expansion converges to zero in this set. This principle does not immediately extend to several dimensions, and here we study the Hausdorff dimension of the sets of points where localization for Riesz means of Fourier expansions may fail.
Articolo in rivista - Articolo scientifico
Sets of divergence, localization, Riesz means, Hausdorff dimension.
English
2014
366
12
6229
6245
none
Colzani, L., Gigante, G., Vegas, A. (2014). Localization for Riesz means of Fourier expansions. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 366(12), 6229-6245 [10.1090/S0002-9947-2014-06076-5].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/54998
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
Social impact