The rising of world population, coupled with the depletion of earth's resources and the escalation of pollution, urgently demands the advancement of existing technologies and the development of new ones. These innovations must aim to enhance the quality of life while preserving the planet. Among various sectors, the healthcare industry requires a shift toward a more sustainable paradigm, as the production of chemicals and pharmaceuticals often releases hazardous compounds into the environment as waste products. Furthermore, increased use of medicines accelerates the emergence of antibiotic-resistant microorganisms, necessitating the exploration of new therapeutic options. In this context, plasma medicine has emerged prominently over the last 30 years, proposing atmospheric pressure plasmas as viable alternatives to traditional antibiotics and treatments. The expansion of plasma medicine has been rapid and haphazard, leading to the emergence of numerous laboratories with custom technologies. Currently, many devices have achieved high technology readiness levels and some of them are approaching clinical trials. However, this rapid evolution has hindered the establishment of uniform strategies and gold standards, resulting in a wide panorama of apparatuses that are difficult to compare. Moreover, the interaction of plasmas with living matter is a complex multiscale process requiring expertise from various fields. Although some hypotheses exist, a comprehensive understanding of the biochemical pathways involved remains elusive. To gain a complete perspective of the process, it is essential to combine multiple diagnostic methods and explore the different phases and timescales of the interaction, systematically comparing the results. This thesis addresses the optimization and customization of atmospheric pressure plasma sources for direct bactericidal treatments. It details the design and development of three devices based on different technological paradigms, highlighting their similarities and differences. Physical, chemical, and biological methods are employed to assess the performance of each source. The discharges and ionization processes are characterized using electrical measurements and imaging techniques. Two radiative models are developed to interpret optical emission spectroscopy spectra: the first focuses on excited argon in the plasma bulk, while the second describes the vibrational and rotational excitation of nitrogen molecules in the mixing layer between plasma and air. Infrared absorption spectroscopy is used to quantify reactive oxygen and nitrogen species released in the gas phase, correlating their production with plasma properties. The final part of this work reports a comparative characterization of several plasma sources. The focus is on the necessity of integrating all measurement methods into a single unified setup, ensuring that generated data that can be meaningfully compared. In the first experimental campaign, a threshold effect was observed in one of the sources, with the biological outcomes sharply appearing after a welldefined voltage limit; the second campaign allowed to exclude many phenomena and species from having a predominant role in the interaction, providing insights into the underlying biochemical reactions involved. Overall, this work acts as a proof-of-concept for an extensive and multimodal characterization of cold atmospheric plasma jets for bacterial inactivation. Achieved results demonstrate the potential of the realized setup, providing a promising framework for future studies and advancements in the field.

L'aumento della popolazione mondiale, parallelamente all'esaurimento delle risorse della terra e all'aumento dell'inquinamento, esige un urgente progresso nelle esistenti tecnologie e lo sviluppo di nuovi sistemi che puntino a migliorare la qualità della vita preservando il pianeta. Tra i vari settori, l'industria sanitaria richiede una transizione verso un paradigma più ecologico e sostenibile; la produzione di sostanze chimiche e farmaci, infatti, spesso implica il rilascio nell'ambiente di prodotti di scarto, contenenti composti pericolosi. L'uso crescente di farmaci, inoltre, stimola l'evoluzione di microrganismi resistenti agli antibiotici, rendendo necessario lo sviluppo di nuove metodologie terapeutiche. In questo contesto, la plasma medicine è largamente cresciuta negli ultimi 30 anni, proponendo i plasmi a pressione atmosferica come alternative più ecologiche agli antibiotici e ai trattamenti tradizionali. L'espansione della plasma medicine è stata rapida e disorganizzata, portando all'emergere di numerosi laboratori con tecnologie proprie. Ad oggi svariati dispositivi hanno raggiunto alti livelli di technology readiness levels, e alcuni si avvicinano alla sperimentazione clinica. Questa rapida evoluzione ha tuttavia ostacolato lo stabilirsi di strategie comuni e standard di riferimento, portando a un ampio panorama di strumenti difficili da confrontare tra loro. Inoltre, l'interazione dei plasmi con la materia vivente è un processo complesso e multiscala che richiede competenze specifiche in diversi campi. Nonostante esistano alcune ipotesi preliminari, una comprensione chiara e completa dei processi biochimici coinvolti rimane parzialmente oscura. Una visione completa del processo si può ottenere solo combinando molteplici diagnostiche ed esplorando le diverse fasi e scale temporali dell'interazione, con un confronto sistematico dei risultati. Questa tesi discute l'ottimizzazione delle sorgenti di plasma a pressione atmosferica per trattamenti battericidi diretti. Viene dettagliata la progettazione e lo sviluppo di tre sorgenti, basate su diversi approcci tecnologici, evidenziando somiglianze e differenze; le prestazioni di ogni strumento sono valutate combinando metodi fisici, chimici e biologici. Sono quindi caratterizzati i processi di scarica e ionizzazione utilizzando misurazioni elettriche e tecniche di imaging. Per interpretare gli spettri di emissione, sono sviluppati due modelli radiativi: il primo si concentra sull'argon eccitato nel cuore del plasma, mentre il secondo descrive gli stati eccitati vibrazionali e rotazionali delle molecole di azoto nello strato di miscelazione tra plasma e aria. Tramite spettroscopia di assorbimento nello spettro infrarosso, poi, sono quantificate le specie reattive di ossigeno e azoto rilasciate nella fase gassosa, correlando la loro produzione con le proprietà del plasma. L’ultima parte di questo lavoro riporta una caratterizzazione comparativa di diverse sorgenti di plasma. È stata posta particolare attenzione alla necessità di integrare tutte le diagnostiche in un setup unitario, garantendo la raccolta di dati che possano essere efficacemente confrontati. Nella prima campagna sperimentale è stato osservato un effetto a soglia in una delle sorgenti, con gli effetti biologici che si sviluppano rapidamente al raggiungimento di una soglia di tensione ben definita; la seconda ha poi permesso di escludere svariati fenomeni e specie dall’avere un ruolo dominante nell’interazione, rivelando importanti indizi sulle reazioni biochimiche sottostanti coinvolte. Nel complesso, questo lavoro si pone come proof-of-concept per una caratterizzazione estensiva e multimodale dei jet di plasma freddo a pressione atmosferico per l'inattivazione di batteri. I risultati ottenuti mostrano un alto potenziale per il setup realizzato, fornendo un quadro promettente per studi futuri.

(2025). Cold atmospheric plasma sources as bactericidal devices: a comparative study. (Tesi di dottorato, , 2025).

Cold atmospheric plasma sources as bactericidal devices: a comparative study

ZAMPIERI, LEONARDO
2025

Abstract

The rising of world population, coupled with the depletion of earth's resources and the escalation of pollution, urgently demands the advancement of existing technologies and the development of new ones. These innovations must aim to enhance the quality of life while preserving the planet. Among various sectors, the healthcare industry requires a shift toward a more sustainable paradigm, as the production of chemicals and pharmaceuticals often releases hazardous compounds into the environment as waste products. Furthermore, increased use of medicines accelerates the emergence of antibiotic-resistant microorganisms, necessitating the exploration of new therapeutic options. In this context, plasma medicine has emerged prominently over the last 30 years, proposing atmospheric pressure plasmas as viable alternatives to traditional antibiotics and treatments. The expansion of plasma medicine has been rapid and haphazard, leading to the emergence of numerous laboratories with custom technologies. Currently, many devices have achieved high technology readiness levels and some of them are approaching clinical trials. However, this rapid evolution has hindered the establishment of uniform strategies and gold standards, resulting in a wide panorama of apparatuses that are difficult to compare. Moreover, the interaction of plasmas with living matter is a complex multiscale process requiring expertise from various fields. Although some hypotheses exist, a comprehensive understanding of the biochemical pathways involved remains elusive. To gain a complete perspective of the process, it is essential to combine multiple diagnostic methods and explore the different phases and timescales of the interaction, systematically comparing the results. This thesis addresses the optimization and customization of atmospheric pressure plasma sources for direct bactericidal treatments. It details the design and development of three devices based on different technological paradigms, highlighting their similarities and differences. Physical, chemical, and biological methods are employed to assess the performance of each source. The discharges and ionization processes are characterized using electrical measurements and imaging techniques. Two radiative models are developed to interpret optical emission spectroscopy spectra: the first focuses on excited argon in the plasma bulk, while the second describes the vibrational and rotational excitation of nitrogen molecules in the mixing layer between plasma and air. Infrared absorption spectroscopy is used to quantify reactive oxygen and nitrogen species released in the gas phase, correlating their production with plasma properties. The final part of this work reports a comparative characterization of several plasma sources. The focus is on the necessity of integrating all measurement methods into a single unified setup, ensuring that generated data that can be meaningfully compared. In the first experimental campaign, a threshold effect was observed in one of the sources, with the biological outcomes sharply appearing after a welldefined voltage limit; the second campaign allowed to exclude many phenomena and species from having a predominant role in the interaction, providing insights into the underlying biochemical reactions involved. Overall, this work acts as a proof-of-concept for an extensive and multimodal characterization of cold atmospheric plasma jets for bacterial inactivation. Achieved results demonstrate the potential of the realized setup, providing a promising framework for future studies and advancements in the field.
RICCARDI, CLAUDIA
MARTINES, EMILIO
Plasma; Plasma medicine; Diagnostiche; Disinfezione; Confronto
Plasma; Plasma medicine; Diagnostic; Disinfection; Comparison
Settore PHYS-03/A - Fisica sperimentale della materia e applicazioni
English
15-apr-2025
37
2023/2024
open
(2025). Cold atmospheric plasma sources as bactericidal devices: a comparative study. (Tesi di dottorato, , 2025).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_893268.pdf

accesso aperto

Descrizione: Tesi di Zampieri Leonardo - 893268
Tipologia di allegato: Doctoral thesis
Dimensione 11.99 MB
Formato Adobe PDF
11.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/549729
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact