We exhibit existence of non-trivial solutions of some fractional linear Schr & ouml;dinger equations which are radial and vanish at the origin. This is in stark contrast to what happens in the local case. We also prove analogous results in the presence of a Hardy potential.

Mainini, E., Ognibene, R., Volzone, B. (2025). Local multiplicity for fractional linear equations with Hardy potentials. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 64(2) [10.1007/s00526-024-02914-2].

Local multiplicity for fractional linear equations with Hardy potentials

Ognibene R.;
2025

Abstract

We exhibit existence of non-trivial solutions of some fractional linear Schr & ouml;dinger equations which are radial and vanish at the origin. This is in stark contrast to what happens in the local case. We also prove analogous results in the presence of a Hardy potential.
Articolo in rivista - Articolo scientifico
Fractional Laplacian; Nonlinearities; Variational Method
English
6-gen-2025
2025
64
2
51
none
Mainini, E., Ognibene, R., Volzone, B. (2025). Local multiplicity for fractional linear equations with Hardy potentials. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 64(2) [10.1007/s00526-024-02914-2].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/548561
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
Social impact