Background: The role of sulfur-containing drugs, disulfiram (DSF) and N-acetylcysteine (NAC), in alleviating neuroinflammation is poorly understood. The objective of this study was to examine the effect of DSF and NAC on memory and on the metabolism of L-cysteine and inflammation-related parameters in the cerebral cortex of rats in a model of neuroinflammation induced by the administration of lipopolysaccharide (LPS). Methods: All the treatments were administered intraperitoneally for 10 days (LPS at a dose of 0.5 mg/kg b.w., DSF at a dose of 100 mg/kg b.w, and NAC at a dose of 100 mg/kg b.w.). Behavior was evaluated by the novel object recognition (NOR) test and object location (OL) test, and the level of brain-derived neurotrophic factor (BDNF) was assayed to evaluate neuronal functioning. Cerebral cortex homogenates were tested for hydrogen sulfide (H2S), sulfane sulfur, sulfates, non-protein sulfhydryl groups (NPSH), nitric oxide (NO), and reactive oxygen species (ROS) by biochemical analysis. Results: Neither DSF nor NAC alleviated LPS-induced memory disorders estimated by the NOR test and OL test. The studied compounds also did not affect significantly the levels of BDNF, ROS, NO, H2S, and sulfane sulfur in the cerebral cortex. However, we observed an increase in sulfate concentration in brain tissues after LPS treatment, while DSF and NAC caused an additional increase in sulfate concentration. On the other hand, our study showed that the administration of DSF or NAC together with LPS significantly enhanced the cortical level of NPSH, of which glutathione is the main component. Conclusions: Our study did not confirm the suggested potential of DSF and NAC to correct memory disorders; however, it corroborated the notion that they reduced oxidative stress induced by LPS by increasing the NPSH level. Additionally, our study showed an increase in sulfate concentration in the brain tissues after LPS treatment, which means the upregulation of sulfite and sulfate production in inflammatory conditions.

Iciek, M., Bilska-Wilkosz, A., Gorny, M., Bednarski, M., Zygmunt, M., Miller, A., et al. (2025). The Effect of Disulfiram and N-Acetylcysteine, Potential Compensators for Sulfur Disorders, on Lipopolysaccharide-Induced Neuroinflammation Leading to Memory Impairment and the Metabolism of L-Cysteine Disturbance. MOLECULES, 30(3) [10.3390/molecules30030578].

The Effect of Disulfiram and N-Acetylcysteine, Potential Compensators for Sulfur Disorders, on Lipopolysaccharide-Induced Neuroinflammation Leading to Memory Impairment and the Metabolism of L-Cysteine Disturbance

Nicosia N.;
2025

Abstract

Background: The role of sulfur-containing drugs, disulfiram (DSF) and N-acetylcysteine (NAC), in alleviating neuroinflammation is poorly understood. The objective of this study was to examine the effect of DSF and NAC on memory and on the metabolism of L-cysteine and inflammation-related parameters in the cerebral cortex of rats in a model of neuroinflammation induced by the administration of lipopolysaccharide (LPS). Methods: All the treatments were administered intraperitoneally for 10 days (LPS at a dose of 0.5 mg/kg b.w., DSF at a dose of 100 mg/kg b.w, and NAC at a dose of 100 mg/kg b.w.). Behavior was evaluated by the novel object recognition (NOR) test and object location (OL) test, and the level of brain-derived neurotrophic factor (BDNF) was assayed to evaluate neuronal functioning. Cerebral cortex homogenates were tested for hydrogen sulfide (H2S), sulfane sulfur, sulfates, non-protein sulfhydryl groups (NPSH), nitric oxide (NO), and reactive oxygen species (ROS) by biochemical analysis. Results: Neither DSF nor NAC alleviated LPS-induced memory disorders estimated by the NOR test and OL test. The studied compounds also did not affect significantly the levels of BDNF, ROS, NO, H2S, and sulfane sulfur in the cerebral cortex. However, we observed an increase in sulfate concentration in brain tissues after LPS treatment, while DSF and NAC caused an additional increase in sulfate concentration. On the other hand, our study showed that the administration of DSF or NAC together with LPS significantly enhanced the cortical level of NPSH, of which glutathione is the main component. Conclusions: Our study did not confirm the suggested potential of DSF and NAC to correct memory disorders; however, it corroborated the notion that they reduced oxidative stress induced by LPS by increasing the NPSH level. Additionally, our study showed an increase in sulfate concentration in the brain tissues after LPS treatment, which means the upregulation of sulfite and sulfate production in inflammatory conditions.
Articolo in rivista - Articolo scientifico
cognitive disorders; disulfiram; hydrogen sulfide; lipopolysaccharide; N-acetylcysteine; neuroinflammation; non-protein thiols; novel object recognition; sulfane sulfur; sulfate;
English
27-gen-2025
2025
30
3
578
open
Iciek, M., Bilska-Wilkosz, A., Gorny, M., Bednarski, M., Zygmunt, M., Miller, A., et al. (2025). The Effect of Disulfiram and N-Acetylcysteine, Potential Compensators for Sulfur Disorders, on Lipopolysaccharide-Induced Neuroinflammation Leading to Memory Impairment and the Metabolism of L-Cysteine Disturbance. MOLECULES, 30(3) [10.3390/molecules30030578].
File in questo prodotto:
File Dimensione Formato  
Iciek-2025-Molecules-VoR.pdf

accesso aperto

Descrizione: This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 5.61 MB
Formato Adobe PDF
5.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/548210
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
Social impact