The screening of plant-derived compounds with anti-cancer properties is a promising strategy to meet the growing need for new, safe and effective anti-cancer drugs. Justicidin B is a plants secondary metabolite that displays anti-cancer properties in several tumor cells. Therefore, it represents a good candidate. We used the 3R-compliant organism Caenorhabditis elegans to evaluate the safety of justicidin B produced by in vitro-grown adventitious roots of Linum lewisii. We showed that a dose of 100 µg/mL justicidin B does not affect worm vitality in either short-term or chronic administration; in contrast, the 200 µg/mL dose induces a lifespan reduction, but only in short-term daily treatment. We attributed this effect to its accumulation in lipofuscin granules in the pharynx as observed through confocal analysis. HPLC analysis confirmed the higher accumulation justicidin B with a 200 µg/mL dose but also revealed the presence of metabolic derivatives that could be responsible for the toxicity. We also demonstrated that the 100 µg/mL dose does not affect worm fertility or development. Our results highlight the safety of justicidin B, supporting its employment in cancer therapy, and encourage the use of a C. elegans model as an appropriate tool to assess compounds’ toxicity before moving to more complex organisms.
Sciandrone, B., Kentsop, R., Pensotti, R., Ottolina, G., Mascheretti, I., Mattana, M., et al. (2024). Toxicological Analysis of the Arylnaphthalene Lignan Justicidin B Using a Caenorhabditis elegans Model. MOLECULES, 29(23) [10.3390/molecules29235516].
Toxicological Analysis of the Arylnaphthalene Lignan Justicidin B Using a Caenorhabditis elegans Model
Sciandrone B.;Pensotti R.;Regonesi M. E.
2024
Abstract
The screening of plant-derived compounds with anti-cancer properties is a promising strategy to meet the growing need for new, safe and effective anti-cancer drugs. Justicidin B is a plants secondary metabolite that displays anti-cancer properties in several tumor cells. Therefore, it represents a good candidate. We used the 3R-compliant organism Caenorhabditis elegans to evaluate the safety of justicidin B produced by in vitro-grown adventitious roots of Linum lewisii. We showed that a dose of 100 µg/mL justicidin B does not affect worm vitality in either short-term or chronic administration; in contrast, the 200 µg/mL dose induces a lifespan reduction, but only in short-term daily treatment. We attributed this effect to its accumulation in lipofuscin granules in the pharynx as observed through confocal analysis. HPLC analysis confirmed the higher accumulation justicidin B with a 200 µg/mL dose but also revealed the presence of metabolic derivatives that could be responsible for the toxicity. We also demonstrated that the 100 µg/mL dose does not affect worm fertility or development. Our results highlight the safety of justicidin B, supporting its employment in cancer therapy, and encourage the use of a C. elegans model as an appropriate tool to assess compounds’ toxicity before moving to more complex organisms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.