In recent decades, batteries have played a major role in shaping society and its progress. They have become essential in increasing the use of renewable energy sources, supporting the growth of electric vehicles, and meeting the growing demand for portable electronics. As this demand continues to grow, developing low-cost advanced batteries that can store and deliver energy efficiently and safely has become a priority. The lithium-ion battery (LIB) is currently the most widely used electrochemical energy storage technology on the market, thanks to its reliability and ability to deliver satisfactory electrochemical performance due to its high energy density. However, the increasing demand for batteries may outpace lithium supply, and there are serious challenges concerning the most employed anodic material (i.e. graphite), both in terms of manufacturing and electrochemical performances (graphite electrodes pose high-current safety issues). Thus, while there is a need to develop alternative anodic materials, on the other hand, post-lithium options, such as sodium-ion batteries (SIBs), are gaining attention as a viable complement to lithium-based systems. In this respect, the search for innovative materials to further improve battery performance has become a focal point in recent years: possible high-capacity alternatives as a negative electrode for LIBs and SIBs are the alloys, such as lithium-tin and sodium-tin. These materials have a higher specific capacity due to the large amount of active ions that can be involved in the alloying and dealloying processes. However, one of the main problems in their use is the high volume variation that occurs during the lithiation/sodiation and delithiation/desodiation processes of the electrode, where this mechanical stress causes it to crack in a few cycles, resulting in cyclability problems. A possible way to reduce such mechanical instability would be to exploit the alloying reactions and use conversion oxides instead of bare metals, especially in nanostructured formations or composite materials with intimate contacts between the oxide and conducting agents, which can also buffer the volume changes. In this PhD thesis, we introduce an innovative method to obtain nanostructured oxide formations on conductive agents via thermal treatment of Sn-substituted MAX phase systems. Non-oxidized MAX phases exhibit high electric and thermal conductivities, but negligible energy storage performances. Hence, controlling thermal oxidation in MAX phases is crucial in order to obtain electrochemically active composites suitable as anodes for alkaline-ion batteries. Since the key to understanding their electrochemical behavior lies in the morphology, crystal structure, and formation mechanism of the nanostructures, besides the electrochemical testing, a multi-characterization approach, including diffraction, microscopy and spectroscopic methods, has been conducted; among these techniques, Transmission Electron Microscopy (TEM) analysis has held crucial importance in the investigation of the materials, consisting of standard and novel approaches. Indeed, this investigation and my whole PhD work fall within the EU-funded SMART-Electron project (Grant Agreement n° 964591) which aims, among other things, at the development of a new dynamic-TEM-based technique for the spatio-temporal visualization of nanomaterials dynamics with enhanced sensitivity to specific properties and degrees of freedom.
Negli ultimi decenni, le batterie hanno giocato un ruolo fondamentale nel plasmare la società e il suo progresso. Sono diventate essenziali per aumentare l'uso delle fonti di energia rinnovabile, supportare la crescita dei veicoli elettrici e soddisfare la crescente domanda di dispositivi elettronici portatili. Con il continuo aumento di questa domanda, lo sviluppo di batterie avanzate a basso costo che possano immagazzinare e fornire energia in modo efficiente e sicuro è diventato una priorità. La batteria agli ioni di litio (LIB) è attualmente la tecnologia di accumulo elettrochimico più ampiamente utilizzata sul mercato, grazie alla sua affidabilità e capacità di fornire prestazioni elettrochimiche soddisfacenti grazie alla sua elevata densità energetica. Tuttavia, la crescente domanda di batterie potrebbe superare l'offerta di litio, insieme a sfide riguardanti il materiale anodico più utilizzato (cioè la grafite), sia in termini di produzione che di prestazioni elettrochimiche (in particolare problemi di sicurezza ad alte correnti). Pertanto, mentre c’è la necessità di sviluppare materiali anodici alternativi, d’altra parte, le opzioni post-litio, come le batterie agli ioni di sodio (SIB), stanno attirando attenzione come complemento praticabile ai sistemi a base di litio. La ricerca di materiali innovativi per migliorare ulteriormente le prestazioni delle batterie è diventata un punto focale negli ultimi anni: possibili alternative ad alta capacità come elettrodo negativo per LIB e SIB sono le leghe, come il litio-stagno e il sodio-stagno. Questi materiali hanno una capacità specifica maggiore grazie alla grande quantità di ioni attivi che possono essere coinvolti nei processi di alligazione e de-alligazione. Tuttavia, uno dei principali problemi nel loro utilizzo è la variazione di volume elevata che si verifica durante i processi di litiazione/sodiazione e delitiazione/desodiazione dell'elettrodo, dove questo stress meccanico causa la rottura dell'elettrodo in pochi cicli, generando problemi di cicliabilità. Un possibile modo per ridurre tale instabilità meccanica sarebbe sfruttare le reazioni di lega e utilizzare ossidi di conversione anziché metalli puri, specialmente in formazioni nanostrutturate o materiali compositi con contatti intimi tra l'ossido e gli agenti conduttivi, che possono anche attenuare le variazioni di volume. In questa tesi di dottorato, presentiamo un metodo innovativo per ottenere formazioni di ossidi nanostrutturati su agenti conduttivi tramite trattamento termico di sistemi di fase MAX sostituiti con Sn. Le fasi MAX non ossidate presentano elevate conduttività elettrica e termica, ma prestazioni di accumulo energetico trascurabili. Pertanto, controllare l'ossidazione termica nelle fasi MAX è fondamentale per ottenere compositi elettrochimicamente attivi idonei come anodi per batterie agli ioni alcalini. Poiché la chiave per comprendere il loro comportamento elettrochimico risiede nella morfologia, struttura cristallina e meccanismo di formazione delle nanostrutture, oltre ai test elettrochimici, è stato condotto un approccio di caratterizzazione multipla, comprendente metodi di diffrazione, microscopia e spettroscopia; tra queste tecniche, l'analisi di Microscopia Elettronica a Trasmissione (TEM) ha rivestito un'importanza cruciale nell'indagine dei materiali, includendo approcci standard e innovativi. Infatti, questa indagine e tutto il mio lavoro di dottorato rientrano nel progetto SMART-Electron finanziato dall'UE (Grant Agreement n° 964591) che mira, tra le altre cose, allo sviluppo di una nuova tecnica basata su TEM dinamico per la visualizzazione spazio-temporale della dinamica dei nanomateriali con sensibilità migliorata a specifiche proprietà e gradi di libertà.
(2025). Electrochemical behavior of oxidized MAX phases as alkaline-ion battery electrodes: exploring novel approaches of Electron Microscopy. (Tesi di dottorato, , 2025).
Electrochemical behavior of oxidized MAX phases as alkaline-ion battery electrodes: exploring novel approaches of Electron Microscopy
OSTROMAN, IRENE
2025
Abstract
In recent decades, batteries have played a major role in shaping society and its progress. They have become essential in increasing the use of renewable energy sources, supporting the growth of electric vehicles, and meeting the growing demand for portable electronics. As this demand continues to grow, developing low-cost advanced batteries that can store and deliver energy efficiently and safely has become a priority. The lithium-ion battery (LIB) is currently the most widely used electrochemical energy storage technology on the market, thanks to its reliability and ability to deliver satisfactory electrochemical performance due to its high energy density. However, the increasing demand for batteries may outpace lithium supply, and there are serious challenges concerning the most employed anodic material (i.e. graphite), both in terms of manufacturing and electrochemical performances (graphite electrodes pose high-current safety issues). Thus, while there is a need to develop alternative anodic materials, on the other hand, post-lithium options, such as sodium-ion batteries (SIBs), are gaining attention as a viable complement to lithium-based systems. In this respect, the search for innovative materials to further improve battery performance has become a focal point in recent years: possible high-capacity alternatives as a negative electrode for LIBs and SIBs are the alloys, such as lithium-tin and sodium-tin. These materials have a higher specific capacity due to the large amount of active ions that can be involved in the alloying and dealloying processes. However, one of the main problems in their use is the high volume variation that occurs during the lithiation/sodiation and delithiation/desodiation processes of the electrode, where this mechanical stress causes it to crack in a few cycles, resulting in cyclability problems. A possible way to reduce such mechanical instability would be to exploit the alloying reactions and use conversion oxides instead of bare metals, especially in nanostructured formations or composite materials with intimate contacts between the oxide and conducting agents, which can also buffer the volume changes. In this PhD thesis, we introduce an innovative method to obtain nanostructured oxide formations on conductive agents via thermal treatment of Sn-substituted MAX phase systems. Non-oxidized MAX phases exhibit high electric and thermal conductivities, but negligible energy storage performances. Hence, controlling thermal oxidation in MAX phases is crucial in order to obtain electrochemically active composites suitable as anodes for alkaline-ion batteries. Since the key to understanding their electrochemical behavior lies in the morphology, crystal structure, and formation mechanism of the nanostructures, besides the electrochemical testing, a multi-characterization approach, including diffraction, microscopy and spectroscopic methods, has been conducted; among these techniques, Transmission Electron Microscopy (TEM) analysis has held crucial importance in the investigation of the materials, consisting of standard and novel approaches. Indeed, this investigation and my whole PhD work fall within the EU-funded SMART-Electron project (Grant Agreement n° 964591) which aims, among other things, at the development of a new dynamic-TEM-based technique for the spatio-temporal visualization of nanomaterials dynamics with enhanced sensitivity to specific properties and degrees of freedom.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_796425.pdf
embargo fino al 06/02/2027
Descrizione: Tesi di Ostroman Irene - 796425
Tipologia di allegato:
Doctoral thesis
Dimensione
14.56 MB
Formato
Adobe PDF
|
14.56 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.