Sustainability has become of primary importance in the tire industry due to the high environmental impact associated with their production and waste management. For this reason, scientific research on elastomer-based compounds is focusing on increasing the sustainability of the entire lifecycle of rubber products. The development of ‘green’ tires involves using natural resources as much as possible instead of fossil-derived chemicals, so as to reduce dependence on this non-renewable source. With the growing interest in this research area, an increasing number of biopolymers have been considered, principally for reinforcing elastomeric matrices. Most commonly, lignin, cellulose, starch, and other natural fibers are considered for rubber bio-nanocomposites, while proteins are much less studied. Proteins constitute a broad class of biopolymers composed of α-amino acids linked by amide bonds. In nature, proteins (together with phospholipids) have a significant impact on the physiochemical properties of the natural rubber Hevea Brasiliensis, making it significantly different from its synthetic analog, cis-1,4-polyisoprene. Its special properties, which are thought to be related to the non-rubber constituents (NRC), include high tear resistance, stress-induced crystallization, and increased resistance to aging. Taking into account their effects on natural rubber, in a bio-inspired approach, proteins could be used for the production of ‘artificial’ rubber nanocomposites. Various proteins can be recovered in large quantities from plant and animal by-products. Examples include wheat gluten and keratin. The use of these materials also positively contributes to aspects of the circular economy as they are constituents of waste products, the utilization of which enables the biodegradability of rubber products to be increased. This PhD thesis explores the addition of different types of proteins to elastomer composites for applications in the tire industry. Initially, the use of enzymatic hydrolysis to modify proteins (especially wheat gluten) as a possible strategy for increasing functionality for the preparation of rubber composites is described. A key theme described concerns understanding the effect of protein incorporation in a typical rubber formulation, including the use of a reinforcing filler and other chemicals. A particular focus is dedicated to understanding the influence of proteins in the rubber vulcanization process, the effect on mechanical properties, and the influence on the thermo-oxidative aging process. Furthermore, another goal is to individuate an effective strategy for the incorporation of proteins into an elastomeric nanocomposite, where the focus is put on the optimization of protein dispersion, and the interfacial compatibility between all components of the formulation used. Chemical modification of the protein hydrolyzate for rubber application is considered, with a focus on sustainability also in the functionalization phase, using procedures that do not involve the use of solvents and hazardous chemicals. Also in this direction, the physical and chemical modification of rubber (in particular, natural rubber) is considered. The main objective of these activities is to obtain composites with improved mechanical properties, in particular with increased strength and toughness, using materials of natural origin (proteins). Finally, the project carried out during the research period abroad is described, where proteins are instead used as a matrix for the production of cross-linked bioplastics for absorbent material applications.

Il tema della sostenibilità è diventato sempre più di centrale nell'industria degli pneumatici a causa dell'elevato impatto ambientale derivante dalla loro produzione e gestione di prodotti a fine ciclo vita. Di conseguenza, la ricerca scientifica in questo settore si sta focalizzando sulla progettazione di compositi elastomerici sostenibili. L'obiettivo è quello di sfruttare prodotti ottenibili a partire da risorse naturali, al fine di ridurre la dipendenza da fonti non rinnovabili come il petrolio. In particolare, con lo scopo di rinforzo di matrici elastomeriche, sono stati presi in considerazione un numero sempre maggiore di biopolimeri. Più comunemente, per i nanocompositi in gomma si considerano lignina, cellulosa, amido e altre fibre naturali, mentre altre bio macromolecole come le proteine sono meno studiate. Le proteine costituiscono un'ampia classe di biopolimeri costituiti da α-amminoacidi legati da legami ammidici. Le proteine (insieme ai fosfolipidi) contribuiscono significativamente a migliorare le proprietà fisiche della gomma naturale ottenuta da Hevea Brasiliensis, rendendola peculiare e differente dal suo analogo sintetico, ovvero il cis-1,4-poliisoprene. È stato infatti stabilito come la presenza di costituenti non gomma sia associata ad alcune proprietà, tra cui l'elevata resistenza alla lacerazione, il fenomeno di ‘strain-induced crystallization’ e una maggiore resistenza all'invecchiamento. Tenendo conto dell’importanza delle proteine nel determinare le proprietà funzionali della gomma naturale, in un approccio ispirato alla natura, le proteine risultano essere potenzialmente impiegate anche per la produzione di nanocompositi ‘artificiali’ in gomma. Diverse proteine possono essere ottenute in grandi quantità da sottoprodotti vegetali e animali, come il glutine e la cheratina. L'utilizzo di questi materiali presenta anche vantaggi in termini di economia circolare, in quanto essendo costituenti di prodotti di scarto. L’utilizzo di proteine consente inoltre l’aumento della biodegradabilità dei nanocompositi ottenuti. In questa tesi di dottorato, l'effetto dell'aggiunta di proteine ai compositi elastomerici è stato studiato, con l'obiettivo di sviluppare materiali con applicazione negli pneumatici. Inizialmente, è stato studiato l’effetto l'idrolisi enzimatica per la modifica (in particolare del glutine di frumento) come possibile strategia per il miglioramento della dispersione nella matrice in gomma. Un tema chiave approfondito riguarda la comprensione dell'effetto dell'incorporazione delle proteine in una tipica formulazione di gomma, compreso l'uso di un filler rinforzante e di altri additivi. Particolare attenzione è dedicata allo studio dell'influenza delle proteine nel processo di vulcanizzazione della gomma, l’effetto sulle proprietà meccaniche e l’influenza sul processo di invecchiamento termo-ossidativo. Inoltre, è stata identificata una strategia efficace per l'incorporazione delle proteine in matrici elastomeriche, ottimizzandone la dispersione e della compatibilità interfacciale. Per aumentarne ancora di più le caratteristiche di rinforzo e proprietà funzionali, sono state poi testate alcune funzionalizzazioni chimiche dell'idrolizzato proteico, utilizzando vie sintetiche che non prevedono l'uso di solventi e reagenti chimici potenzialmente dannosi per l’uomo e per l’ambiente. Sempre in questa direzione, la modifica fisica e chimica della gomma è stata presa in considerazione. L’obiettivo principale di queste attività consiste nell’ottenimento compositi con proprietà meccaniche migliorate, in particolare con una maggiore resistenza e tenacità, utilizzando proteine. Infine, viene descritto il progetto seguito durante al periodo di ricerca all’estero, dove le proteine sono state usate come matrice per la produzione di bioplastiche reticolate per applicazioni in materiali assorbenti.

(2025). Bio-Inspired Supramolecular Approach to Elastomeric Composites and Nanocomposites. (Tesi di dottorato, , 2025).

Bio-Inspired Supramolecular Approach to Elastomeric Composites and Nanocomposites

ALAGIA, MASSIMO
2025

Abstract

Sustainability has become of primary importance in the tire industry due to the high environmental impact associated with their production and waste management. For this reason, scientific research on elastomer-based compounds is focusing on increasing the sustainability of the entire lifecycle of rubber products. The development of ‘green’ tires involves using natural resources as much as possible instead of fossil-derived chemicals, so as to reduce dependence on this non-renewable source. With the growing interest in this research area, an increasing number of biopolymers have been considered, principally for reinforcing elastomeric matrices. Most commonly, lignin, cellulose, starch, and other natural fibers are considered for rubber bio-nanocomposites, while proteins are much less studied. Proteins constitute a broad class of biopolymers composed of α-amino acids linked by amide bonds. In nature, proteins (together with phospholipids) have a significant impact on the physiochemical properties of the natural rubber Hevea Brasiliensis, making it significantly different from its synthetic analog, cis-1,4-polyisoprene. Its special properties, which are thought to be related to the non-rubber constituents (NRC), include high tear resistance, stress-induced crystallization, and increased resistance to aging. Taking into account their effects on natural rubber, in a bio-inspired approach, proteins could be used for the production of ‘artificial’ rubber nanocomposites. Various proteins can be recovered in large quantities from plant and animal by-products. Examples include wheat gluten and keratin. The use of these materials also positively contributes to aspects of the circular economy as they are constituents of waste products, the utilization of which enables the biodegradability of rubber products to be increased. This PhD thesis explores the addition of different types of proteins to elastomer composites for applications in the tire industry. Initially, the use of enzymatic hydrolysis to modify proteins (especially wheat gluten) as a possible strategy for increasing functionality for the preparation of rubber composites is described. A key theme described concerns understanding the effect of protein incorporation in a typical rubber formulation, including the use of a reinforcing filler and other chemicals. A particular focus is dedicated to understanding the influence of proteins in the rubber vulcanization process, the effect on mechanical properties, and the influence on the thermo-oxidative aging process. Furthermore, another goal is to individuate an effective strategy for the incorporation of proteins into an elastomeric nanocomposite, where the focus is put on the optimization of protein dispersion, and the interfacial compatibility between all components of the formulation used. Chemical modification of the protein hydrolyzate for rubber application is considered, with a focus on sustainability also in the functionalization phase, using procedures that do not involve the use of solvents and hazardous chemicals. Also in this direction, the physical and chemical modification of rubber (in particular, natural rubber) is considered. The main objective of these activities is to obtain composites with improved mechanical properties, in particular with increased strength and toughness, using materials of natural origin (proteins). Finally, the project carried out during the research period abroad is described, where proteins are instead used as a matrix for the production of cross-linked bioplastics for absorbent material applications.
LA FERLA, BARBARA
PERI, FRANCESCO
Gomme; Proteine; Nanocompositi; Sostenibilità; Pneumatici
Rubbers; Proteins; Nanocomposites; Sustainability; Tire applications
CHIM/05 - SCIENZA E TECNOLOGIA DEI MATERIALI POLIMERICI
English
31-gen-2025
37
2023/2024
embargoed_20280131
(2025). Bio-Inspired Supramolecular Approach to Elastomeric Composites and Nanocomposites. (Tesi di dottorato, , 2025).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_812321.pdf

embargo fino al 31/01/2028

Descrizione: Tesi di dottorato_Alagia Massimo
Tipologia di allegato: Doctoral thesis
Dimensione 9.1 MB
Formato Adobe PDF
9.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/541982
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact