Nuclear magnetic resonance (NMR) is a powerful technique that has found use in different scientific disciplines, including chemistry, biology, physics, and medicine. The diversity of applications of NMR also encompasses the use of NMR-active noble gases as inert and non-invasive probes, highly sensitive to their local environment. Among the various noble gas options, 129Xe stands out as the optimal choice due to its high natural abundance, remarkable inertness, and 1/2 nuclear spin. 129Xe NMR has proven to be an invaluable tool for investigating the porous structure of solid-state materials. It has also found applications in elucidating the structural organization and free volume of both simple and complex liquids. In this work, we aimed to push the boundaries of 129Xe NMR by applying the technique to a wide range of liquid and solid-state materials. The first Chapter of this Thesis offers an overview of the NMR technique by exploring its underlying physics. The interactions experienced by nuclear spins immersed in a magnetic field are briefly described in terms of their Hamiltonians. Then, the phenomenon of NMR relaxation and its mechanisms are discussed, along with some instrumental aspects and NMR techniques. Lastly, the 129Xe NMR technique is introduced, outlining the basic principles and some of the physical models proposed over the years. Chapter 2 aims to deepen the understanding of the interactions governing the NMR parameters of xenon dissolved in liquids. To address this, the liquid structure of a series of dihalomethanes (CH2X2 with X = Cl, Br, I) was investigated using a 129Xe NMR coupled with molecular dynamics simulations and quantum mechanical calculations. This approach enabled the rationalization of factors determining the NMR parameters of dissolved xenon, describing the interplay between the solvent’s structural organization and its interaction with xenon atoms. Chapter 3 focuses on the application of 129Xe NMR to the characterization of porous liquids (PLs). The fluid nature of these materials makes traditional characterization techniques difficult to apply. However, 129Xe NMR of dissolved xenon is potentially a powerful technique, as it is capable of probing both the intrinsic pores and the structural organization of liquids. Chapter 3 reports the application of 129Xe NMR to new type II PLs based on the molecular paddlewheel Noria. The results enabled a detailed description of the porous topology of these systems, paving the way for 129Xe NMR as a characterization tool for porous liquids. In Chapter 4., as a proof of concept, we demonstrated the possibility to use 129Xe NMR to characterize the structure of type V deep eutectic solvents (DESs) and eutectic mixtures. The NMR parameters were sensitive to the sample composition and revealed that DESs have less free volume than ideal eutectic mixtures due to the favorable packing of the components. This highlighted the potential of 129Xe NMR to provide insights into the structure of deep eutectic solvents and mixtures, potentially aiding in the understanding of their thermodynamic non-ideality and in the design of task-specific solvents. Chapter 5 details the preparation and structural characterization of electrocatalysts for the oxygen reduction reaction, derived from hemp fibers and shives. Hemp-based biochar was produced through controlled pyrolysis at varying temperatures, followed by activation and functionalization with iron phthalocyanine. The electrocatalysts exhibited good catalytic activity in a basic environment. 129Xe NMR was used to study the morphology and porous structure at each preparation stage, revealing changes post-activation and functionalization. The analysis showed that homogeneous pore distributions enhance electrocatalytic performance by improving active site distribution, mass transport, and accessibility.
La risonanza magnetica nucleare (NMR) è una tecnica spettroscopica che trova uso in diverse discipline scientifiche, tra cui chimica, biologia, fisica e medicina. La varietà delle applicazioni della NMR include anche l'uso di gas nobili NMR-attivi come sonde inerti e non invasive, altamente sensibili al loro ambiente locale. Tra le varie opzioni, lo 129Xe si distingue come scelta ottimale grazie alla sua alta abbondanza naturale, notevole inerzia chimica e spin nucleare pari a 1/2. La tecnica 129Xe NMR si è rivelata molto potente per indagare la struttura porosa di materiali solidi ed ha trovato applicazioni nello studio dell'organizzazione strutturale e del volume libero di liquidi semplici e complessi. L’obiettivo di questo lavoro è ampliare i confini della 129Xe NMR applicando la tecnica a una vasta gamma di materiali liquidi e solidi. Il primo capitolo di questa tesi offre una panoramica della tecnica NMR esplorando la sua fisica di base. Vengono brevemente descritti i fenomeni di interazione degli spin nucleari immersi in un campo magnetico in termini dei loro Hamiltoniani. Successivamente, si discute il fenomeno del rilassamento NMR ed i suoi meccanismi, insieme ad alcuni aspetti strumentali. Infine, viene introdotta la tecnica 129Xe NMR, delineando i principi di base ed alcuni dei modelli fisici proposti nel corso degli anni. Il Capitolo 2 mira ad approfondire le interazioni che governano i parametri NMR dello xenon disciolto nei liquidi. È stata indagata la struttura liquida di una serie di dialometani (CH2X2 con X = Cl, Br, I) utilizzando la tecnica 129Xe NMR combinata con simulazioni di dinamica molecolare e calcoli quantomeccanici. Questo approccio ha permesso di razionalizzare i fattori che determinano i parametri NMR dello xenon disciolto, descrivendo il legame tra l'organizzazione strutturale del solvente e la sua interazione con gli atomi di Xe. Il Capitolo 3 si concentra sull'applicazione della 129Xe NMR alla caratterizzazione di liquidi porosi (PLs). La natura fluida di questi materiali rende difficile l'applicazione delle tecniche di caratterizzazione tradizionali. In questo senso, la 129Xe NMR dello xenon disciolto è potenzialmente una tecnica valida in quanto capace di sondare sia i pori intrinseci sia l'organizzazione strutturale dei liquidi. Il Capitolo 3 riporta l'applicazione della 129Xe NMR a nuovi PLs di tipo II basati sulla molecola Noria. I risultati hanno consentito una descrizione dettagliata della topologia porosa di questi sistemi, aprendo la strada alla 129Xe NMR come strumento di caratterizzazione per liquidi porosi. Il Capitolo 4 dimostra la possibilità di utilizzare la 129Xe NMR per caratterizzare la struttura dei deep eutectic solvents (DESs) di tipo V e delle miscele eutettiche. I parametri NMR, sensibili alla composizione del campione, hanno rivelato che i DESs hanno meno volume libero rispetto alle miscele eutettiche ideali a causa del favorevole impaccamento dei componenti. Questo ha messo in evidenza il potenziale della 129Xe NMR nel fornire informazioni sulla struttura dei DESs e delle miscele, aiutando potenzialmente a comprendere la loro non idealità termodinamica. Il Capitolo 5 descrive la preparazione e la caratterizzazione di elettrocatalizzatori per la reazione di riduzione dell'ossigeno, derivati da fibre e scaglie di canapa. Del biochar derivante dalla canapa è stato prodotto attraverso pirolisi a temperature variabili, seguita da attivazione e funzionalizzazione con ftalocianina di ferro. Gli elettrocatalizzatori hanno mostrato una buona attività catalitica in ambiente basico. La 129Xe NMR è stata utilizzata per studiare morfologia e struttura porosa in ogni fase della preparazione, rivelando cambiamenti dopo attivazione e funzionalizzazione. L'analisi ha dimostrato che distribuzioni omogenee di pori migliorano le prestazioni elettrocatalitiche, ottimizzando la distribuzione dei siti attivi, il trasporto di massa e l'accessibilità.
(2025). The Multifaceted Applications of 129Xe NMR: Insights into Complex Systems from Structured Liquids to Catalysts. (Tesi di dottorato, , 2025).
The Multifaceted Applications of 129Xe NMR: Insights into Complex Systems from Structured Liquids to Catalysts
BOVENTI, MATTEO
2025
Abstract
Nuclear magnetic resonance (NMR) is a powerful technique that has found use in different scientific disciplines, including chemistry, biology, physics, and medicine. The diversity of applications of NMR also encompasses the use of NMR-active noble gases as inert and non-invasive probes, highly sensitive to their local environment. Among the various noble gas options, 129Xe stands out as the optimal choice due to its high natural abundance, remarkable inertness, and 1/2 nuclear spin. 129Xe NMR has proven to be an invaluable tool for investigating the porous structure of solid-state materials. It has also found applications in elucidating the structural organization and free volume of both simple and complex liquids. In this work, we aimed to push the boundaries of 129Xe NMR by applying the technique to a wide range of liquid and solid-state materials. The first Chapter of this Thesis offers an overview of the NMR technique by exploring its underlying physics. The interactions experienced by nuclear spins immersed in a magnetic field are briefly described in terms of their Hamiltonians. Then, the phenomenon of NMR relaxation and its mechanisms are discussed, along with some instrumental aspects and NMR techniques. Lastly, the 129Xe NMR technique is introduced, outlining the basic principles and some of the physical models proposed over the years. Chapter 2 aims to deepen the understanding of the interactions governing the NMR parameters of xenon dissolved in liquids. To address this, the liquid structure of a series of dihalomethanes (CH2X2 with X = Cl, Br, I) was investigated using a 129Xe NMR coupled with molecular dynamics simulations and quantum mechanical calculations. This approach enabled the rationalization of factors determining the NMR parameters of dissolved xenon, describing the interplay between the solvent’s structural organization and its interaction with xenon atoms. Chapter 3 focuses on the application of 129Xe NMR to the characterization of porous liquids (PLs). The fluid nature of these materials makes traditional characterization techniques difficult to apply. However, 129Xe NMR of dissolved xenon is potentially a powerful technique, as it is capable of probing both the intrinsic pores and the structural organization of liquids. Chapter 3 reports the application of 129Xe NMR to new type II PLs based on the molecular paddlewheel Noria. The results enabled a detailed description of the porous topology of these systems, paving the way for 129Xe NMR as a characterization tool for porous liquids. In Chapter 4., as a proof of concept, we demonstrated the possibility to use 129Xe NMR to characterize the structure of type V deep eutectic solvents (DESs) and eutectic mixtures. The NMR parameters were sensitive to the sample composition and revealed that DESs have less free volume than ideal eutectic mixtures due to the favorable packing of the components. This highlighted the potential of 129Xe NMR to provide insights into the structure of deep eutectic solvents and mixtures, potentially aiding in the understanding of their thermodynamic non-ideality and in the design of task-specific solvents. Chapter 5 details the preparation and structural characterization of electrocatalysts for the oxygen reduction reaction, derived from hemp fibers and shives. Hemp-based biochar was produced through controlled pyrolysis at varying temperatures, followed by activation and functionalization with iron phthalocyanine. The electrocatalysts exhibited good catalytic activity in a basic environment. 129Xe NMR was used to study the morphology and porous structure at each preparation stage, revealing changes post-activation and functionalization. The analysis showed that homogeneous pore distributions enhance electrocatalytic performance by improving active site distribution, mass transport, and accessibility.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_816320.pdf
accesso aperto
Descrizione: Tesi di Boventi Matteo - 816320
Tipologia di allegato:
Doctoral thesis
Dimensione
7.49 MB
Formato
Adobe PDF
|
7.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.