Over the past decades, the rapid depletion of natural resources and the progressive environmental deterioration have highlighted the urgent need for more sustainable chemical processes. In this context, pollutant removal from the environment is a potential solution, with TiO2 nanoparticles (NPs)-mediated photocatalysis being the most efficient strategy. However, a more efficient approach is to directly improve sustainability and reduce pollutant generation in the overall process. For this reason, more sustainable practices in the preparation and use of TiO2 are needed. Current TiO2 industrial production and liquid-phase synthesis still require high energy and solvent consumption. Despite the extraction of TiO2 from wastes has been considered, this solution still has a strong environmental impact. The direct use of Ti-rich residues or their modification through mild chemical treatments remain the more sustainable options, but poorly explored in the literature. Besides, TiO2 sustainable application is usually obtained by immobilizing TiO2 NPs on adsorbent supports, to improve material recovery and NPs dispersion or with more efficient catalytic process, such as photothermo catalysis which, by synergically combining photon and thermal excitations, reactions proceed at lower temperatures, with higher yields and selectivity compared to conventional catalysis. In this context, this PhD thesis aims to design efficient TiO2-based materials with a sustainable approach to be applied for environmental remediation. A Ti-rich waste material, known as tionite, was thoroughly characterized and Its composition was improved to enhance its photoactivity, by modifying the preparation step or by removing silica components under mild conditions. Despite recovered samples proving inefficient in classical photocatalytic and photo-Fenton degradation processes, interesting results were obtained in the partial oxidation of ferulic acid to vanillin, an industrially relevant compound. All samples showed a significant selectivity for vanillin, with the acidic treated sample providing the best results. Samples performances were then related to the adsorption efficiency for ferulic acid and vanillin and to their different surface properties. In addition, peroxymonosulfate (PMS)-assisted catalysis was explored, as it can be activated by a wide range of metals, and all samples showed remarkable efficiency in PMS activation and, consequently, in 4-chlorophenol degradation. In particular, the best results were achieved with the neutralized samples, without further treatments, and faster kinetics were observed by increasing the number of photons. It must be highlighted that the recovered catalysts were active also under visible light. Regarding the sustainable application, TiO2 NPs were synthesized on SiO2 spherical and bidimensional NPs, halloysite and sepiolite, and all samples were thoroughly characterized. Photocatalytic tests were conducted on paracetamol, with all materials proving effective in degrading the pollutant, while adsorption tests for a mixture of metal cations demonstrated the superiority of sepiolite. For the photo-thermo catalysis, Ru nanoparticles were deposited onto the samples and the materials were tested in CO2 methanation. Preliminary results indicate an increase CH4 yield at lower temperatures due to the synergic photon and thermal excitation. In conclusion, the results suggest that TiO2-based materials not only can reduce environmental pollution by degrading organic molecules or transforming CO2 into valuable products, but the development of sustainable strategies for their production, preparation and application is possible. The key challenges lie in the improvement of TiO2 recovery from waste materials and also in developing more eco-friendly application strategies, like photothermo catalysis.
Negli ultimi decenni, il rapido esaurimento delle risorse naturali e il progressivo deterioramento ambientale hanno accelerato la transizione verso processi chimici più sostenibili. La rimozione dei contaminanti rappresenta una possibile soluzione e, in questo contesto, la fotocatalisi mediata da nanoparticelle (NP) di TiO2 si dimostra la strategia più efficiente. Tuttavia, migliorare la sostenibilità e ridurre la generazione di contaminanti nell'intero processo, quindi nella preparazione e uso di TiO2, è una soluzione più efficace. Riguardo all’origine, l'attuale produzione industriale di TiO2 e la sintesi in fase liquida richiedono un elevato consumo di energia e solventi. L'estrazione di TiO2 da scarti è un’alternativa valida, ma comporta un forte impatto ambientale. L'uso diretto di residui ricchi di Ti o la loro modifica mediante trattamenti chimici blandi rimangono quindi le opzioni più sostenibili, benché poco esplorate in letteratura. Inoltre, la sostenibilità nell’applicazione di TiO2 è solitamente ottenuta fissando le NP su supporti adsorbenti per migliorarne il recupero e la dispersione, oppure mediante processi catalitici più efficienti, come la fototermocatalisi, che combina sinergicamente eccitazioni fotoniche e termiche, consentendo alle reazioni di avvenire a temperature inferiori, con rese e selettività maggiori rispetto alle catalisi convenzionali. In questo contesto, codesta tesi di dottorato mira a progettare materiali a base TiO2 ad alta efficienza e con approcci sostenibili, per applicazioni ambientali. Si è esplorato l'uso di uno scarto ricco in Ti, ottenuto dalla produzione industriale di TiO2, come fotocatalizzatore alternativo e l'applicazione di NP di TiO2 disperse su NP sferiche e bidimensionali di SiO2, sepiolite e halloysite per la metanazione dei CO2 via fototermo catalisi. Il materiale di scarto, la tionite, è stato ampiamente caratterizzato e la sua composizione semplificata per aumentarne la fotoattività, modificando la fase di preparazione e rimuovendo i componenti a base silice con processi acidi o basici blandi. Sebbene inefficaci nella degradazione fotocatalitica e foto-Fenton, i materiali hanno mostrato una significativa selettività nell’ossidazione parziale dell'acido ferulico a vanillina, un composto di rilevanza industriale, specialmente a seguito del trattamento acido. Le prestazioni dei campioni sono state quindi correlate all'efficienza nell’adsorbimento di acido ferulico e vanillina e alle diverse proprietà superficiali. È stata inoltre esplorata la fotodegradazione di 4-clorofenolo assistita da perossimonosolfato, poiché attivabile da un'ampia gamma di metalli, in cui i campioni non trattati chimicamente hanno fornito i migliori risultati. È stato osservato che la cinetica di degradazione aumenta con il numero di fotoni e che i catalizzatori erano attivi anche con luce visibile. Riguardo l'applicazione sostenibile, la ricerca si è focalizzata sulla sintesi e caratterizzazione di NP di TiO2 su diversi supporti a base di silice. I test fotocatalitici sul paracetamolo hanno dimostrato l’efficacia di tutti i materiali nella degradazione del contaminante, mentre test di adsorbimento di cationi metallici hanno mostrato la superiorità della sepiolite. Per la fototermocatalisi, i materiali sono stati decorati con NP di Ru e testati nella metanazione di CO2. I risultati preliminari indicano un aumento della resa di CH4 a temperature inferiori, grazie all'eccitazione sinergica fotonica e termica. In conclusione, i risultati suggeriscono che i materiali a base di TiO2 non solo possono ridurre l'inquinamento ambientale degradando molecole organiche o trasformando CO2 in prodotti utili, ma che lo sviluppo di strategie sostenibili per la loro produzione, preparazione e applicazione è possibile. Le sfide restano il recupero efficiente e consapevole di materiali di scarto e nello sviluppo di strategie di applicazione più ecologici, come la fototermocatalisi.
(2025). Sustainability in TiO2 recovery and application for environmental remediation. (Tesi di dottorato, , 2025).
Sustainability in TiO2 recovery and application for environmental remediation
VIGANO', LORENZO
2025
Abstract
Over the past decades, the rapid depletion of natural resources and the progressive environmental deterioration have highlighted the urgent need for more sustainable chemical processes. In this context, pollutant removal from the environment is a potential solution, with TiO2 nanoparticles (NPs)-mediated photocatalysis being the most efficient strategy. However, a more efficient approach is to directly improve sustainability and reduce pollutant generation in the overall process. For this reason, more sustainable practices in the preparation and use of TiO2 are needed. Current TiO2 industrial production and liquid-phase synthesis still require high energy and solvent consumption. Despite the extraction of TiO2 from wastes has been considered, this solution still has a strong environmental impact. The direct use of Ti-rich residues or their modification through mild chemical treatments remain the more sustainable options, but poorly explored in the literature. Besides, TiO2 sustainable application is usually obtained by immobilizing TiO2 NPs on adsorbent supports, to improve material recovery and NPs dispersion or with more efficient catalytic process, such as photothermo catalysis which, by synergically combining photon and thermal excitations, reactions proceed at lower temperatures, with higher yields and selectivity compared to conventional catalysis. In this context, this PhD thesis aims to design efficient TiO2-based materials with a sustainable approach to be applied for environmental remediation. A Ti-rich waste material, known as tionite, was thoroughly characterized and Its composition was improved to enhance its photoactivity, by modifying the preparation step or by removing silica components under mild conditions. Despite recovered samples proving inefficient in classical photocatalytic and photo-Fenton degradation processes, interesting results were obtained in the partial oxidation of ferulic acid to vanillin, an industrially relevant compound. All samples showed a significant selectivity for vanillin, with the acidic treated sample providing the best results. Samples performances were then related to the adsorption efficiency for ferulic acid and vanillin and to their different surface properties. In addition, peroxymonosulfate (PMS)-assisted catalysis was explored, as it can be activated by a wide range of metals, and all samples showed remarkable efficiency in PMS activation and, consequently, in 4-chlorophenol degradation. In particular, the best results were achieved with the neutralized samples, without further treatments, and faster kinetics were observed by increasing the number of photons. It must be highlighted that the recovered catalysts were active also under visible light. Regarding the sustainable application, TiO2 NPs were synthesized on SiO2 spherical and bidimensional NPs, halloysite and sepiolite, and all samples were thoroughly characterized. Photocatalytic tests were conducted on paracetamol, with all materials proving effective in degrading the pollutant, while adsorption tests for a mixture of metal cations demonstrated the superiority of sepiolite. For the photo-thermo catalysis, Ru nanoparticles were deposited onto the samples and the materials were tested in CO2 methanation. Preliminary results indicate an increase CH4 yield at lower temperatures due to the synergic photon and thermal excitation. In conclusion, the results suggest that TiO2-based materials not only can reduce environmental pollution by degrading organic molecules or transforming CO2 into valuable products, but the development of sustainable strategies for their production, preparation and application is possible. The key challenges lie in the improvement of TiO2 recovery from waste materials and also in developing more eco-friendly application strategies, like photothermo catalysis.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_811978.pdf
accesso aperto
Descrizione: Sustainability in TiO2 recovery and application for environmental remediation
Tipologia di allegato:
Doctoral thesis
Dimensione
10.51 MB
Formato
Adobe PDF
|
10.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.