Human mesenchymal stem cells (h-MSCs) have garnered significant interest in the field of regenerative medicine, particularly for the treatment of brain disorders. Their unique properties, including immunomodulation, neuroprotection, and the ability to influence various cell types through their secretome, place h-MSCs as promising candidates for cell therapy. The potential applications of h-MSCs range from neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and multiple sclerosis, to brain disorders related to premature infants, like encephalopathy of prematurity (EoP), cerebral palsy, and autism spectrum disorders. Recent preclinical studies have shown encouraging results, demonstrating improvements in cognitive and motor functions after h-MSCs administration. Clinical studies on patients suffering from neurodegenerative diseases and premature infants are ongoing to test the efficacy of h-MSCs in human diseases. Ongoing research aims to enhance efficacy and ensure safety, paving the way for h-MSCs as a viable treatment option for brain disorders in the near future. The primary aim of this thesis was to assess the impact of h-MSCs secretome, naïve or pre-activated, in two in vitro models of EoP-associated inflammation, in which we analyzed microglia and oligodendrocyte precursors cells (OPCs), two brain cell types particularly vulnerable in perinatal brain injury. Then, an in vivo model of EoP in which h-MSCs were injected by intranasal administration was used. The extracellular matrix structures named perineuronal nets were analyzed to unravel h-MSCs pro-regenerative effects in pre-clinical settings. Furthermore, an in vitro model of senescent/dysfunctional microglia was established and characterized by multiple analyses to further investigate the mechanism of action of h-MSCs on microglia in a degenerative context. Our results indicate that the most relevant functions altered by the h-MSCs secretome in activated/dysfunctional microglia are related to extracellular matrix (ECM) remodeling and immune system regulation, and suggest that these functional changes may contribute to the beneficial outcome of h-MSCs in EoP preclinical models. Interestingly, h-MSCs activated by creatine preloading were more efficient in dampening microglial immune function compared to naïve h-MSCs or cells activated by hypoxia pre-conditioning. In an in vivo model of EoP, we observed that h-MSCs administration is protective against the loss of brain-specific extracellular matrix structures named perineuronal nets (PNNs) that surround parvalbumin interneurons in the somatosensory cortex, indicating that h-MSCs play a role in ECM remodeling not only in our in vitro model but also in vivo, further supporting h-MSCs use in cell-based therapy. We also report that the h-MSCs secretome, especially that of h-MSCs preloaded with creatine, rescues OPC cell death induced by the inflammatory insult and promotes OPC differentiation into mature oligodendrocytes over control conditions, supporting the use of h-MSCs to treat hypomyelination caused by inflammatory insults in several CNS diseases, including prematurity. Overall, this research on MSC therapies in the context of neuroinflammation underscores the potential of h-MSCs not only to mitigate the detrimental effects of singular activated cells but also to foster the resolution of inflammation and neurodegeneration in the whole central nervous system. Through this work, we aspire to contribute to the development of effective treatments for patients affected by neuroinflammatory diseases.

Le cellule staminali mesenchimali umane (h-MSCs) hanno suscitato un notevole interesse nel campo della medicina rigenerativa, in particolare per il trattamento dei disturbi cerebrali, in quanto le loro proprietà fanno delle h-MSCs un promettente candidato per la terapia cellulare. Le potenziali applicazioni delle h-MSCs spaziano dalle malattie neurodegenerative come il morbo di Alzheimer, il morbo di Parkinson e la sclerosi multipla, ai disturbi cerebrali legati ai neonati prematuri, come l'encefalopatia della prematurità (EoP), la paralisi cerebrale e i disturbi dello spettro autistico. Recenti studi preclinici hanno dato risultati incoraggianti, dimostrando miglioramenti nelle funzioni cognitive e motorie dopo la somministrazione di h-MSCs. Sono infatti attualmente in corso studi clinici su pazienti affetti da malattie neurodegenerative e su neonati prematuri per verificare l'efficacia delle h-MSC nelle malattie umane. La ricerca di base e clinica mira a migliorare l'efficacia e a garantire la sicurezza, aprendo la strada alle h-MSCs come opzione terapeutica valida per i disturbi cerebrali nel prossimo futuro. L'obiettivo primario di questa tesi è stato quello di valutare l'impatto del secretoma delle h-MSCs, naïve o pre-attivate, in due modelli in vitro di infiammazione associata a EoP, in cui abbiamo analizzato l'effetto delle h-MSCs sulla microglia e sulle cellule precursori degli oligodendrociti (OPCs), due tipi di cellule cerebrali particolarmente vulnerabili nelle lesioni cerebrali perinatali. Con lo scopo di investigare l’impatto delle h-MSCs anche in condizioni pre-cliniche, è stato utilizzato un modello animale di prematurità in cui le h-MSCs sono state iniettate per via intra-nasale e successivamente è stata analizzata una specifica struttura della matrice extracellulare (ECM) cerebrale per valutare l’effetto pro-rigenerativo delle h-MSCs. Inoltre, è stato creato un modello in vitro di microglia senescente/disfunzionale, caratterizzato tramite l’utilizzo di diverse tecniche, che potrebbe essere utile per indagare ulteriormente il meccanismo d'azione delle h-MSCs sulla microglia in un contesto degenerativo. I nostri risultati indicano che le funzioni più rilevanti alterate dal secretoma delle h-MSCs nella microglia attivata/disfunzionale sono legate al rimodellamento della ECM e alla regolazione del sistema immunitario, suggerendo che questi cambiamenti funzionali possono contribuire ai benefici delle h-MSCs nei modelli preclinici di EoP. È interessante notare che le h-MSCs attivate dal pre-condizionamento con creatina sono state più efficienti nel regolare la funzione immunitaria della microglia rispetto alle h-MSCs naïve o alle cellule attivate dal pre-trattamento con ipossia. Nel modello in vivo di EoP abbiamo osservato che la somministrazione di h-MSCs è protettiva contro la perdita delle strutture di ECM specifiche del cervello, indicando che le h-MSCs svolgono un ruolo nel modellare la ECM anche in vivo, supportando ulteriormente l'uso delle h-MSCs in clinica. Abbiamo inoltre osservato che il secretoma delle h-MSCs protegge gli OPCs dalla morte cellulare indotta dall'insulto infiammatorio e promuove il loro differenziamento in oligodendrociti maturi, supportando l'uso delle h-MSCs per trattare l'ipomielinizzazione causata da insulti infiammatori in diverse malattie del sistema nervoso centrale e dalla nascita prematura. Nel complesso, questa tesi sulle terapie basate su h-MSCs nel contesto della neuroinfiammazione sottolinea il loro potenziale non solo per mitigare gli effetti dannosi delle singole cellule danneggiate, ma anche per favorire la risoluzione dell’infiammazione e della neurodegenerazione nell’intero sistema nervoso centrale. Attraverso questo lavoro aspiriamo a contribuire, anche se in piccola parte, allo sviluppo di trattamenti efficaci per i pazienti affetti da malattie neuro-infiammatorie.

(2025). Testing potency and mechanism of action of human umbilical cord-derived mesenchymal stem cells using in vitro paradigms of encephalopathy of prematurity. (Tesi di dottorato, , 2025).

Testing potency and mechanism of action of human umbilical cord-derived mesenchymal stem cells using in vitro paradigms of encephalopathy of prematurity

LOMBARDO, MARTA TIFFANY
2025

Abstract

Human mesenchymal stem cells (h-MSCs) have garnered significant interest in the field of regenerative medicine, particularly for the treatment of brain disorders. Their unique properties, including immunomodulation, neuroprotection, and the ability to influence various cell types through their secretome, place h-MSCs as promising candidates for cell therapy. The potential applications of h-MSCs range from neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and multiple sclerosis, to brain disorders related to premature infants, like encephalopathy of prematurity (EoP), cerebral palsy, and autism spectrum disorders. Recent preclinical studies have shown encouraging results, demonstrating improvements in cognitive and motor functions after h-MSCs administration. Clinical studies on patients suffering from neurodegenerative diseases and premature infants are ongoing to test the efficacy of h-MSCs in human diseases. Ongoing research aims to enhance efficacy and ensure safety, paving the way for h-MSCs as a viable treatment option for brain disorders in the near future. The primary aim of this thesis was to assess the impact of h-MSCs secretome, naïve or pre-activated, in two in vitro models of EoP-associated inflammation, in which we analyzed microglia and oligodendrocyte precursors cells (OPCs), two brain cell types particularly vulnerable in perinatal brain injury. Then, an in vivo model of EoP in which h-MSCs were injected by intranasal administration was used. The extracellular matrix structures named perineuronal nets were analyzed to unravel h-MSCs pro-regenerative effects in pre-clinical settings. Furthermore, an in vitro model of senescent/dysfunctional microglia was established and characterized by multiple analyses to further investigate the mechanism of action of h-MSCs on microglia in a degenerative context. Our results indicate that the most relevant functions altered by the h-MSCs secretome in activated/dysfunctional microglia are related to extracellular matrix (ECM) remodeling and immune system regulation, and suggest that these functional changes may contribute to the beneficial outcome of h-MSCs in EoP preclinical models. Interestingly, h-MSCs activated by creatine preloading were more efficient in dampening microglial immune function compared to naïve h-MSCs or cells activated by hypoxia pre-conditioning. In an in vivo model of EoP, we observed that h-MSCs administration is protective against the loss of brain-specific extracellular matrix structures named perineuronal nets (PNNs) that surround parvalbumin interneurons in the somatosensory cortex, indicating that h-MSCs play a role in ECM remodeling not only in our in vitro model but also in vivo, further supporting h-MSCs use in cell-based therapy. We also report that the h-MSCs secretome, especially that of h-MSCs preloaded with creatine, rescues OPC cell death induced by the inflammatory insult and promotes OPC differentiation into mature oligodendrocytes over control conditions, supporting the use of h-MSCs to treat hypomyelination caused by inflammatory insults in several CNS diseases, including prematurity. Overall, this research on MSC therapies in the context of neuroinflammation underscores the potential of h-MSCs not only to mitigate the detrimental effects of singular activated cells but also to foster the resolution of inflammation and neurodegeneration in the whole central nervous system. Through this work, we aspire to contribute to the development of effective treatments for patients affected by neuroinflammatory diseases.
PAGLIA, GIUSEPPE
VERDERIO, CLAUDIA
microglia; prematurità; neuroinfiammazione; matrice extracell.; oligodendrociti
microglia; prematurity; neuroinflammation; extracellular matrix; oligodendrocytes
BIO/10 - BIOCHIMICA
English
3-feb-2025
37
2023/2024
embargoed_20270203
(2025). Testing potency and mechanism of action of human umbilical cord-derived mesenchymal stem cells using in vitro paradigms of encephalopathy of prematurity. (Tesi di dottorato, , 2025).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_889729.pdf

embargo fino al 03/02/2027

Descrizione: Testing Potency and Mechanism of Action of Human Umbilical Cord-Derived Mesenchymal Stem Cells Using in Vitro and in Vivo Paradigms of Encephalopathy of Prematurity
Tipologia di allegato: Doctoral thesis
Dimensione 6.35 MB
Formato Adobe PDF
6.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/541363
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact