This thesis provides an in-depth analysis of the genetic landscape of Acute Lymphoblastic Leukemia (ALL), significantly expanding our understanding of the molecular mechanisms that drive leukemogenesis. By employing advanced sequencing technologies, a wide range of genetic variants and mutations have been identified, highlighting the complexity and heterogeneity of ALL. In addition to reinforcing the critical role of known mutations, particularly those affecting the Ras signaling pathway, the study has uncovered the importance of lesser-known genetic alterations, especially in chromatin remodeling genes and cohesin complex components. These mutations are crucial for key cellular processes such as gene regulation, chromosomal integrity, and DNA repair, shedding new light on their involvement in ALL. A particularly novel aspect of this research is its focus on cohesin genes, with mutations found in 10% of the patient cohort. This represents one of the first direct investigations into the potential role of germline cohesin variants in predisposing individuals to leukemia. The combination of germline variants and somatic mutations in these genes suggests a mechanism through which cohesin mutations may contribute to genomic instability and leukemogenesis. These findings open new avenues for research into cohesinopathies and their broader implications in cancer predisposition syndromes. Clinically, these discoveries have important implications for the management of ALL. The identification of novel genetic variants, alongside the confirmation of known drivers, offers opportunities to refine patient stratification, enhance prognostic accuracy, and inform personalized treatment approaches. Additionally, the study emphasizes the importance of genetic counseling for families carrying germline mutations in genes like STAG1, as these variants may increase inherited cancer risk. Despite the significant progress made, several questions remain, particularly regarding the functional roles of newly discovered variants. Further investigation is needed to elucidate the biological significance of cohesin gene fusions and their potential to disrupt chromosomal architecture or transcriptional regulation. The interaction between cohesin mutations and other established genetic abnormalities, such as the ETV6-RUNX1 fusion, also warrants further exploration. This could reveal how these mutations cooperate to drive leukemia development and influence treatment response. Recent research has also emphasized the role of PAX5 germline mutations, such as the P80R variant, in ALL predisposition. These mutations, coupled with incomplete penetrance, suggest that additional genetic or environmental factors contribute to disease progression. Cohesin mutations, traditionally linked to cohesinopathies like Cornelia de Lange Syndrome (CdLSp), are now recognized for their role in cancer, driving chromosomal instability and gene expression dysregulation. In conclusion, this thesis advances the field of ALL research by uncovering key genetic alterations, particularly in cohesin genes, that play a pivotal role in the disease. The findings not only enhance our understanding of ALL biology but also provide valuable insights for improving clinical outcomes through genetic profiling, ultimately contributing to better survival rates and quality of life for patients.

Questa tesi fornisce un'analisi approfondita del panorama genetico della Leucemia Linfoblastica Acuta (LLA), ampliando significativamente la nostra comprensione dei meccanismi molecolari che guidano la leucemogenesi. Attraverso l'impiego di tecnologie di sequenziamento avanzate, è stata identificata una vasta gamma di varianti genetiche e mutazioni, evidenziando la complessità e l'eterogeneità della LLA. Oltre a rafforzare il ruolo cruciale delle mutazioni note, in particolare quelle che influenzano la via di segnalazione Ras, lo studio ha rivelato l'importanza di alterazioni genetiche meno conosciute, soprattutto nei geni che regolano il rimodellamento della cromatina e nei componenti del complesso della coesine. Queste mutazioni sono fondamentali per processi cellulari chiave come la regolazione genica, l'integrità cromosomica e la riparazione del DNA, gettando nuova luce sul loro coinvolgimento nella LLA. Un aspetto particolarmente innovativo di questa ricerca è il suo focus sui geni delle coesine, con mutazioni rilevate nel 10% della coorte di pazienti. Questo rappresenta una delle prime indagini dirette sul potenziale ruolo delle varianti germinali delle coesine nel predisporre gli individui alla leucemia. La combinazione di varianti germinali e mutazioni somatiche in questi geni suggerisce un meccanismo attraverso il quale le mutazioni delle coesine possono contribuire all'instabilità genomica e alla leucemogenesi. Questi risultati aprono nuove strade per la ricerca sulle coesinopatie e le loro implicazioni più ampie nelle sindromi di predisposizione al cancro. Clinicamente, queste scoperte hanno importanti implicazioni per la gestione della LLA. L'identificazione di nuove varianti genetiche, insieme alla conferma dei driver noti, offre opportunità per affinare la stratificazione dei pazienti, migliorare l'accuratezza prognostica e informare approcci terapeutici personalizzati. Inoltre, lo studio sottolinea l'importanza della consulenza genetica per le famiglie che portano mutazioni germinali in geni come STAG1, poiché queste varianti possono aumentare il rischio ereditario di cancro. Nonostante i progressi significativi raggiunti, rimangono diverse domande, in particolare riguardo ai ruoli funzionali delle varianti recentemente scoperte. Ulteriori indagini sono necessarie per chiarire il significato biologico delle fusioni dei geni della coesine e il loro potenziale nel compromettere l'architettura cromosomica o la regolazione trascrizionale. Anche l'interazione tra le mutazioni della coesine e altre anomalie genetiche consolidate, come la fusione ETV6-RUNX1, merita ulteriori esplorazioni. Questo potrebbe rivelare come queste mutazioni cooperano per guidare lo sviluppo della leucemia e influenzare la risposta al trattamento. Ricerche recenti hanno inoltre sottolineato il ruolo delle mutazioni germinali di PAX5, come la variante P80R, nella predisposizione alla LLA. Queste mutazioni, unite alla penetranza incompleta, suggeriscono che ulteriori fattori genetici o ambientali contribuiscano alla progressione della malattia. Le mutazioni delle coesine, tradizionalmente associate a coesinopatie come la Sindrome di Cornelia de Lange (CdLS), sono ora riconosciute per il loro ruolo nel cancro, inducendo instabilità cromosomica e deregolazione dell'espressione genica. In conclusione, questa tesi avanza il campo della ricerca sulla LLA scoprendo alterazioni genetiche chiave, in particolare nei geni delle coesine, che giocano un ruolo fondamentale nella malattia. I risultati non solo migliorano la nostra comprensione della biologia della LLA, ma forniscono anche preziose informazioni per migliorare gli esiti clinici attraverso la profilazione genetica, contribuendo infine a migliori tassi di sopravvivenza e qualità della vita per i pazienti.

(2025). Germline and Somatic Cohesin complex dysregulation in childhood Acute Lymphoblastic Leukemia. (Tesi di dottorato, , 2025).

Germline and Somatic Cohesin complex dysregulation in childhood Acute Lymphoblastic Leukemia

REBELLATO, STEFANO
2025

Abstract

This thesis provides an in-depth analysis of the genetic landscape of Acute Lymphoblastic Leukemia (ALL), significantly expanding our understanding of the molecular mechanisms that drive leukemogenesis. By employing advanced sequencing technologies, a wide range of genetic variants and mutations have been identified, highlighting the complexity and heterogeneity of ALL. In addition to reinforcing the critical role of known mutations, particularly those affecting the Ras signaling pathway, the study has uncovered the importance of lesser-known genetic alterations, especially in chromatin remodeling genes and cohesin complex components. These mutations are crucial for key cellular processes such as gene regulation, chromosomal integrity, and DNA repair, shedding new light on their involvement in ALL. A particularly novel aspect of this research is its focus on cohesin genes, with mutations found in 10% of the patient cohort. This represents one of the first direct investigations into the potential role of germline cohesin variants in predisposing individuals to leukemia. The combination of germline variants and somatic mutations in these genes suggests a mechanism through which cohesin mutations may contribute to genomic instability and leukemogenesis. These findings open new avenues for research into cohesinopathies and their broader implications in cancer predisposition syndromes. Clinically, these discoveries have important implications for the management of ALL. The identification of novel genetic variants, alongside the confirmation of known drivers, offers opportunities to refine patient stratification, enhance prognostic accuracy, and inform personalized treatment approaches. Additionally, the study emphasizes the importance of genetic counseling for families carrying germline mutations in genes like STAG1, as these variants may increase inherited cancer risk. Despite the significant progress made, several questions remain, particularly regarding the functional roles of newly discovered variants. Further investigation is needed to elucidate the biological significance of cohesin gene fusions and their potential to disrupt chromosomal architecture or transcriptional regulation. The interaction between cohesin mutations and other established genetic abnormalities, such as the ETV6-RUNX1 fusion, also warrants further exploration. This could reveal how these mutations cooperate to drive leukemia development and influence treatment response. Recent research has also emphasized the role of PAX5 germline mutations, such as the P80R variant, in ALL predisposition. These mutations, coupled with incomplete penetrance, suggest that additional genetic or environmental factors contribute to disease progression. Cohesin mutations, traditionally linked to cohesinopathies like Cornelia de Lange Syndrome (CdLSp), are now recognized for their role in cancer, driving chromosomal instability and gene expression dysregulation. In conclusion, this thesis advances the field of ALL research by uncovering key genetic alterations, particularly in cohesin genes, that play a pivotal role in the disease. The findings not only enhance our understanding of ALL biology but also provide valuable insights for improving clinical outcomes through genetic profiling, ultimately contributing to better survival rates and quality of life for patients.
CAZZANIGA, GIOVANNI
FAZIO, GRAZIA
leucemia; pediatrica; coesine; genetica; rna-seq
leukemia; pediatric; cohesins; genetics; rna-seq
MED/38 - PEDIATRIA GENERALE E SPECIALISTICA
English
3-feb-2025
37
2023/2024
embargoed_20280203
(2025). Germline and Somatic Cohesin complex dysregulation in childhood Acute Lymphoblastic Leukemia. (Tesi di dottorato, , 2025).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_890991.pdf

embargo fino al 03/02/2028

Descrizione: Germline and Somatic Cohesin complex dysregulation in childhood Acute Lymphoblastic Leukemia
Tipologia di allegato: Doctoral thesis
Dimensione 7.24 MB
Formato Adobe PDF
7.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/541362
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact