We study standing waves for a nonlinear Schrödinger equation on a star graph G, i.e. N halflines joined at a vertex. At the vertex an interaction occurs described by a boundary condition of delta type with strength α≤0. The nonlinearity is of focusing power type. The dynamics is given by an equation of the form iddtΨt=HΨt-|Ψt|2μΨt, where H is the Hamiltonian operator which generates the linear Schrödinger dynamics. We show the existence of several families of standing waves for every sign of the coupling at the vertex for every ω>α2N2. Furthermore, we determine the ground states, as minimizers of the action on the Nehari manifold, and order the various families. Finally, we show that the ground states are orbitally stable for every allowed ω if the nonlinearity is subcritical or critical, and for ω<ω* otherwise. © 2014 Elsevier Inc
Adami, R., Cacciapuoti, C., Finco, D., Noja, D. (2014). Variational properties and orbital stability of standing waves for NLS equation on a star graph. JOURNAL OF DIFFERENTIAL EQUATIONS, 257(10), 3738-3777 [10.1016/j.jde.2014.07.008].
Variational properties and orbital stability of standing waves for NLS equation on a star graph
NOJA, DIEGO DAVIDEUltimo
2014
Abstract
We study standing waves for a nonlinear Schrödinger equation on a star graph G, i.e. N halflines joined at a vertex. At the vertex an interaction occurs described by a boundary condition of delta type with strength α≤0. The nonlinearity is of focusing power type. The dynamics is given by an equation of the form iddtΨt=HΨt-|Ψt|2μΨt, where H is the Hamiltonian operator which generates the linear Schrödinger dynamics. We show the existence of several families of standing waves for every sign of the coupling at the vertex for every ω>α2N2. Furthermore, we determine the ground states, as minimizers of the action on the Nehari manifold, and order the various families. Finally, we show that the ground states are orbitally stable for every allowed ω if the nonlinearity is subcritical or critical, and for ω<ω* otherwise. © 2014 Elsevier IncFile | Dimensione | Formato | |
---|---|---|---|
JDE14.pdf
Solo gestori archivio
Dimensione
546.1 kB
Formato
Adobe PDF
|
546.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.