A multifunctional alumina-based filler, Al2O3@APTES-Zn, has been synthesized by functionalizing Al2O3 nanoparticles with aminopropyl triethoxysilane (APTES) and subsequently anchoring Zn2+ centers. This multifunctional nanofiller acts simultaneously as a reinforcing agent, cross-linking promoter, and thermal conductivity enhancer in carboxylated nitrile rubber (XNBR) composites. The anchored Zn(II) sites also provide ionic interactions with XNBR terminations, enabling dynamic reversible bonds for self-healing properties. The comprehensive characterization of XNBR/Al2O3@APTES-Zn composites unveils enhanced cross-linking, improved tensile strength and strain at break (up to 17 MPa and 1416% at 24 phr filler), increased thermal conductivity (+11.4% compared to neat Al2O3 at the same loading), and superior self-repairing efficiency (up to 120%). These results demonstrate that the tailored surface and interfacial properties of Al2O3@APTES-Zn represent a promising benchmark for resilient and sustainable composites in applications, such as hoses, seals, gaskets, and automotive components.
Faina, S., Colombo, M., Mirizzi, L., Hernández Santana, M., Utrera-Barrios, S., Nistico', R., et al. (2025). Al2O3 Decorated with Zn Single Sites: A Multifunctional Filler for Upgrading the Properties of XNBR Composites. ACS APPLIED POLYMER MATERIALS, 7(1), 234-246 [10.1021/acsapm.4c02946].
Al2O3 Decorated with Zn Single Sites: A Multifunctional Filler for Upgrading the Properties of XNBR Composites
Faina, S.Primo
;Colombo, M.;Mirizzi, L.;Nistico' , R.;Mostoni, S.;Di Credico, B.;Scotti, R.;D'Arienzo, M.
Ultimo
2025
Abstract
A multifunctional alumina-based filler, Al2O3@APTES-Zn, has been synthesized by functionalizing Al2O3 nanoparticles with aminopropyl triethoxysilane (APTES) and subsequently anchoring Zn2+ centers. This multifunctional nanofiller acts simultaneously as a reinforcing agent, cross-linking promoter, and thermal conductivity enhancer in carboxylated nitrile rubber (XNBR) composites. The anchored Zn(II) sites also provide ionic interactions with XNBR terminations, enabling dynamic reversible bonds for self-healing properties. The comprehensive characterization of XNBR/Al2O3@APTES-Zn composites unveils enhanced cross-linking, improved tensile strength and strain at break (up to 17 MPa and 1416% at 24 phr filler), increased thermal conductivity (+11.4% compared to neat Al2O3 at the same loading), and superior self-repairing efficiency (up to 120%). These results demonstrate that the tailored surface and interfacial properties of Al2O3@APTES-Zn represent a promising benchmark for resilient and sustainable composites in applications, such as hoses, seals, gaskets, and automotive components.File | Dimensione | Formato | |
---|---|---|---|
Faina-2025-ACS Appl Polym Mater-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
8.23 MB
Formato
Adobe PDF
|
8.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.