Myxoid liposarcoma (MLPS) is a subtype of liposarcoma characterized by a chromosomal translocation resulting in the formation of the aberrant transcription factor FUS-DDTI3, which is the main pathogenic event of MLPS. The FUS-DDIT3 expression prevents the terminal differentiation of adipoblasts into adipocytes, leading to the accumulation of immature adipoblasts with uncontrolled proliferation. Previous studies demonstrated that trabectedin causes a substantial transcriptional response in MLPS, which leads to cellular depletion and adipogenesis's reactivation. However, as with most chemotherapeutics, after prolonged treatments with trabectedin, MLPS patients develop drug resistance and no further effective therapies are available at the moment. The role of the FUS-DDIT3 chimera in the modulation of transcription and in the restoration of adipogenesis induced by trabectedin is still unknown. In this context, the first aim of this PhD project described in Chapter 1 was to investigate the effect of trabectedin on the genome-wide DNA binding of the chimera through Chromatin Immunoprecipitation followed by sequencing assay (ChIP-Seq) on MLPS patient derived xenograft (PDX) models sensitive and resistant to trabectedin. ChIP-Seq data on the sensitive model demonstrated a two-phase effect of trabectedin, characterized by an early FUS-DDIT3-independent cytotoxicity, followed by a transcriptionally active pro-differentiation phase due to the long-lasting detachment of the chimera from the DNA. Interestingly, in the resistant model, trabectedin induced a strong transcriptional response at an early time point which was quickly extinguished without consequences on tumor morphology, cell vitality, or adipocytic differentiation, suggesting that the block of adipocytic differentiation is one of the mechanisms related to the resistance. As previously suggested by Frapolli et al., a possible strategy to counteract resistance involves combining trabectedin with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone. This combination restored adipocytic differentiation in PDX models of MLPS resistant to trabectedin, overcoming resistance. These striking preclinical findings provided a strong rationale to undertake a clinical study (NCT04794127) to evaluate the activity of trabectedin in combination with pioglitazone in liposarcoma patients. Possible pharmacokinetics (PK) interactions between trabectedin and pioglitazone were studied in PDX models and in the first four patients enrolled, as described in Chapter 2. Overall, the PK data did not raise any concerns on the safety of the combination both in preclinical and clinical setting, and all four patients had a partial response according to RECIST or CHOI criteria. The results obtained support the need to conduct a randomized clinical trial to confirm the efficacy of this combination in patients. The third part of this project was focused on the evaluation of the efficacy of a new therapeutic strategy to further enhance the differentiation process. To this aim, we used the RXR agonist IRX4204 to maximize the activation of the RXR-PPARγ heterodimer. Results described in Chapter 3 showed that the addition of IRX4204 was useful to obtain a more rapid tumor response and a prolonged growth inhibition. Interestingly, a long-lasting control of the tumor proliferation was obtained even without trabectedin. Unexpectedly, the mechanism behind IRX4204 efficacy in vivo did not seem to involve an increased adipocytic differentiation. Further studies are ongoing to better define the mechanism of action of this combination, since it could be a clinically relevant option, especially for patients not suitable to receive trabectedin or doxorubicin.
Il liposarcoma mixoide (MLPS) è un sottotipo di liposarcoma caratterizzato da una traslocazione cromosomica che porta alla formazione del fattore di trascrizione aberrante FUS-DDTI3, considerato l'evento patogenetico principale. L'espressione di FUS-DDIT3 previene il differenziamento terminale degli adipoblasti in adipociti, portando all'accumulo di adipoblasti immaturi con proliferazione incontrollata. Studi precedenti hanno dimostrato che la trabectedina provoca una risposta trascrizionale nel MLPS che porta a deplezione cellulare e riattivazione dell'adipogenesi. Tuttavia, come con la maggior parte dei chemioterapici, dopo trattamenti prolungati con trabectedina, i pazienti con MLPS sviluppano resistenza e al momento non sono disponibili ulteriori terapie efficaci. Il ruolo della chimera FUS-DDIT3 nella modulazione della trascrizione e nel ripristino dell'adipogenesi indotta da trabectedina è ancora sconosciuto. Come descritto nel Capitolo 1, il primo obiettivo di questo progetto di dottorato è stato quello di valutare l'effetto della trabectedina sul legame al DNA della chimera attraverso un saggio di ChIP-Seq su modelli di xenotrapianto derivati da pazienti (PDX) sensibili e resistenti alla trabectedina. I dati ChIP-Seq sul modello sensibile hanno dimostrato un effetto a due fasi, caratterizzato da una citotossicità precoce di trabectedina indipendente da FUS-DDIT3, seguita da una fase pro-differenziante trascrizionalmente attiva dovuta al distacco prolungato della chimera dal DNA. Nel modello resistente la trabectedina ha indotto in un primo momento una forte risposta trascrizionale che si è spenta rapidamente senza conseguenze sulla morfologia tumorale, la vitalità cellulare o il differenziamento adipocitico, suggerendo che il blocco del differenziamento sarebbe uno dei meccanismi legati alla resistenza. Come precedentemente suggerito da Frapolli et al, una possibile strategia per contrastare la resistenza prevede la combinazione di trabectedina con l'agonista di PPARγ pioglitazone. Questa combinazione è stata in grado di ripristinare il differenziamento adipocitico nei modelli PDX resistenti a trabectedina, superando la resistenza. Questi sorprendenti risultati preclinici hanno fornito una robusta motivazione per intraprendere uno studio clinico (NCT04794127) per valutare l'attività della trabectedina in combinazione con il pioglitazone nei pazienti con liposarcoma. Come descritto nel Capitolo 2, le possibili interazioni farmacocinetiche (PK) tra trabectedina e pioglitazone sono state studiate nei modelli PDX e nei primi quattro pazienti arruolati. In generale, i dati di PK non hanno sollevato preoccupazioni sulla sicurezza della combinazione sia in contesto preclinico che clinico, e tutti i quattro pazienti hanno avuto una risposta parziale secondo i criteri RECIST o CHOI. I risultati ottenuti supportano la necessità di effettuare uno studio clinico randomizzato per confermare l’efficacia della combinazione proposta nei pazienti. La terza parte di questo progetto è stata incentrata sulla valutazione dell'efficacia di una nuova strategia terapeutica per migliorare ulteriormente il processo di differenziamento. A tal fine, abbiamo utilizzato l'agonista di RXR, IRX4204, per massimizzare l'attivazione dell'eterodimero RXR-PPARγ. I risultati descritti nel Capitolo 3 mostrano che l'aggiunta di IRX4204 è stata utile per ottenere una risposta tumorale più rapida e un'inibizione della crescita prolungata. È interessante notare che un controllo duraturo della proliferazione tumorale si è verificato anche senza trabectedina. Inaspettatamente, il meccanismo alla base dell'efficacia in vivo di IRX4204 non sembra coinvolgere un aumentato differenziamento adipocitico. Ulteriori studi sono in corso per definire meglio il meccanismo d'azione di questa combinazione, poiché potrebbe essere un'opzione clinicamente rilevante, soprattutto per i pazienti non idonei a ricevere trabectedina o doxorubicina.
(2025). Induction of adipocytic differentiation in myxoid liposarcoma: new approaches to improve the effectiveness of the available therapies. (Tesi di dottorato, , 2025).
Induction of adipocytic differentiation in myxoid liposarcoma: new approaches to improve the effectiveness of the available therapies
MERONI, MARINA
2025
Abstract
Myxoid liposarcoma (MLPS) is a subtype of liposarcoma characterized by a chromosomal translocation resulting in the formation of the aberrant transcription factor FUS-DDTI3, which is the main pathogenic event of MLPS. The FUS-DDIT3 expression prevents the terminal differentiation of adipoblasts into adipocytes, leading to the accumulation of immature adipoblasts with uncontrolled proliferation. Previous studies demonstrated that trabectedin causes a substantial transcriptional response in MLPS, which leads to cellular depletion and adipogenesis's reactivation. However, as with most chemotherapeutics, after prolonged treatments with trabectedin, MLPS patients develop drug resistance and no further effective therapies are available at the moment. The role of the FUS-DDIT3 chimera in the modulation of transcription and in the restoration of adipogenesis induced by trabectedin is still unknown. In this context, the first aim of this PhD project described in Chapter 1 was to investigate the effect of trabectedin on the genome-wide DNA binding of the chimera through Chromatin Immunoprecipitation followed by sequencing assay (ChIP-Seq) on MLPS patient derived xenograft (PDX) models sensitive and resistant to trabectedin. ChIP-Seq data on the sensitive model demonstrated a two-phase effect of trabectedin, characterized by an early FUS-DDIT3-independent cytotoxicity, followed by a transcriptionally active pro-differentiation phase due to the long-lasting detachment of the chimera from the DNA. Interestingly, in the resistant model, trabectedin induced a strong transcriptional response at an early time point which was quickly extinguished without consequences on tumor morphology, cell vitality, or adipocytic differentiation, suggesting that the block of adipocytic differentiation is one of the mechanisms related to the resistance. As previously suggested by Frapolli et al., a possible strategy to counteract resistance involves combining trabectedin with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone. This combination restored adipocytic differentiation in PDX models of MLPS resistant to trabectedin, overcoming resistance. These striking preclinical findings provided a strong rationale to undertake a clinical study (NCT04794127) to evaluate the activity of trabectedin in combination with pioglitazone in liposarcoma patients. Possible pharmacokinetics (PK) interactions between trabectedin and pioglitazone were studied in PDX models and in the first four patients enrolled, as described in Chapter 2. Overall, the PK data did not raise any concerns on the safety of the combination both in preclinical and clinical setting, and all four patients had a partial response according to RECIST or CHOI criteria. The results obtained support the need to conduct a randomized clinical trial to confirm the efficacy of this combination in patients. The third part of this project was focused on the evaluation of the efficacy of a new therapeutic strategy to further enhance the differentiation process. To this aim, we used the RXR agonist IRX4204 to maximize the activation of the RXR-PPARγ heterodimer. Results described in Chapter 3 showed that the addition of IRX4204 was useful to obtain a more rapid tumor response and a prolonged growth inhibition. Interestingly, a long-lasting control of the tumor proliferation was obtained even without trabectedin. Unexpectedly, the mechanism behind IRX4204 efficacy in vivo did not seem to involve an increased adipocytic differentiation. Further studies are ongoing to better define the mechanism of action of this combination, since it could be a clinically relevant option, especially for patients not suitable to receive trabectedin or doxorubicin.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_780265.pdf
embargo fino al 22/01/2028
Descrizione: Tesi Marina Meroni
Tipologia di allegato:
Doctoral thesis
Dimensione
24.31 MB
Formato
Adobe PDF
|
24.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.