The transcription factor SOX2 is a pivotal regulator in neural development, responsible for maintaining neural stem cells (NSCs) and directing their differentiation within the central nervous system (CNS). Mutations in SOX2 are associated with neurodevelopmental disorders, highlighting its crucial role in early brain formation and the maintenance of NSCs. Despite the established importance of SOX2, the specific genes it targets, particularly those with undefined functions ("T-Dark" genes), remain largely unexplored. This study leverages CRISPR-LICHT (CRISPR-Lineage tracing in Heterogeneous Tissue) technology to investigate the functional roles of these SOX2-targeted T-Dark genes in human cerebral organoids. This cutting-edge technique enables high-throughput, parallel loss-of-function screening in a 3D organoid system, replicating the complex architecture and cellular diversity of the human brain. CRISPR-LICHT uses an inducible Cas9 system combined with dual barcoding strategies to track genetic modifications in specific cell populations over time, allowing precise lineage tracing and functional analysis of gene knockouts in human cerebral organoids. Our approach focuses on optimizing the CRISPR-LICHT workflow for human cerebral organoids, improving the efficiency of gene knockouts, and ensuring the temporal and spatial control of genetic editing events. By targeting T-Dark genes that are downregulated upon SOX2 deletion, identified through RNA sequencing, we aim to uncover their roles in human brain development and their potential contribution to neurodevelopmental disorders. Through a comprehensive screening process, we demonstrate the feasibility of using CRISPR-LICHT to systematically identify essential genes involved in neurogenesis and neuronal differentiation. This study not only advances the understanding of SOX2's regulatory network but also highlights the importance of previously uncharacterized T-Dark genes in brain development. The findings have significant implications for developing targeted therapies for SOX2-related neurodevelopmental disorders, offering new insights into the molecular mechanisms underlying these conditions.
Il fattore di trascrizione SOX2 è un regolatore fondamentale nello sviluppo neuronale, responsabile del mantenimento delle cellule staminali neurali (NSC) e della loro differenziazione all'interno del sistema nervoso centrale (SNC). Le mutazioni di SOX2 sono associate a disturbi dello sviluppo neurobiologico, evidenziando il suo ruolo cruciale nella formazione precoce del cervello e nel mantenimento delle NSC. Nonostante l'importanza consolidata di SOX2, i geni specifici da esso targettizzati, in particolare quelli con funzioni ancora sconosciute (geni "T-Dark"), rimangono in gran parte inesplorati. Questo studio sfrutta la tecnologia CRISPR-LICHT (CRISPR-Lineage tracing in Heterogeneous Tissue) per investigare i ruoli funzionali di questi geni T-Dark targettizzati da SOX2 negli organoidi cerebrali umani. Questa tecnica all'avanguardia consente uno screening ad alta capacità, in parallelo, della perdita di funzione in un sistema organoide 3D, replicando l'architettura complessa e la diversità cellulare del cervello umano. CRISPR-LICHT utilizza un sistema Cas9 inducibile combinato con strategie di barcoding duale per tracciare le modifiche genetiche in popolazioni cellulari specifiche nel tempo, permettendo una tracciabilità precisa delle linee cellulari e un'analisi funzionale dei knockout genici negli organoidi cerebrali umani. Il nostro approccio si concentra sull'ottimizzazione del flusso di lavoro di CRISPR-LICHT per gli organoidi cerebrali umani, migliorando l'efficienza dei knockout genici e garantendo il controllo temporale e spaziale degli eventi di editing genetico. Targettizzando i geni T-Dark che sono downregolati a seguito della delezione di SOX2, identificati tramite sequenziamento dell'RNA, miriamo a scoprire i loro ruoli nello sviluppo del cervello umano e il loro potenziale contributo ai disturbi neurodevelopmentali. Attraverso un processo di screening completo, dimostriamo la fattibilità dell'uso di CRISPR-LICHT per identificare sistematicamente i geni essenziali coinvolti nella neurogenesi e nella differenziazione neuronale. Questo studio non solo avanza la comprensione della rete regolatoria di SOX2, ma evidenzia anche l'importanza di geni T-Dark precedentemente non caratterizzati nello sviluppo cerebrale. I risultati hanno significative implicazioni per lo sviluppo di terapie mirate ai disturbi neurodevelopmentali legati a SOX2, offrendo nuove intuizioni sui meccanismi molecolari alla base di queste condizioni.
(2025). Turning darkness into light: a CRISPR-LICHT high-throughput screen of functional roles of "T-Dark" target genes of the Sox-2 transcription factor in human cerebral organoids.. (Tesi di dottorato, , 2025).
Turning darkness into light: a CRISPR-LICHT high-throughput screen of functional roles of "T-Dark" target genes of the Sox-2 transcription factor in human cerebral organoids.
BALDI, ROBERTA
2025
Abstract
The transcription factor SOX2 is a pivotal regulator in neural development, responsible for maintaining neural stem cells (NSCs) and directing their differentiation within the central nervous system (CNS). Mutations in SOX2 are associated with neurodevelopmental disorders, highlighting its crucial role in early brain formation and the maintenance of NSCs. Despite the established importance of SOX2, the specific genes it targets, particularly those with undefined functions ("T-Dark" genes), remain largely unexplored. This study leverages CRISPR-LICHT (CRISPR-Lineage tracing in Heterogeneous Tissue) technology to investigate the functional roles of these SOX2-targeted T-Dark genes in human cerebral organoids. This cutting-edge technique enables high-throughput, parallel loss-of-function screening in a 3D organoid system, replicating the complex architecture and cellular diversity of the human brain. CRISPR-LICHT uses an inducible Cas9 system combined with dual barcoding strategies to track genetic modifications in specific cell populations over time, allowing precise lineage tracing and functional analysis of gene knockouts in human cerebral organoids. Our approach focuses on optimizing the CRISPR-LICHT workflow for human cerebral organoids, improving the efficiency of gene knockouts, and ensuring the temporal and spatial control of genetic editing events. By targeting T-Dark genes that are downregulated upon SOX2 deletion, identified through RNA sequencing, we aim to uncover their roles in human brain development and their potential contribution to neurodevelopmental disorders. Through a comprehensive screening process, we demonstrate the feasibility of using CRISPR-LICHT to systematically identify essential genes involved in neurogenesis and neuronal differentiation. This study not only advances the understanding of SOX2's regulatory network but also highlights the importance of previously uncharacterized T-Dark genes in brain development. The findings have significant implications for developing targeted therapies for SOX2-related neurodevelopmental disorders, offering new insights into the molecular mechanisms underlying these conditions.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_892731.pdf
accesso aperto
Descrizione: Turning darkness into light: a CRISPR-LICHT high-throughput screen of functional roles of “T-Dark” target genes of the Sox-2 transcription factor in human cerebral organoids
Tipologia di allegato:
Doctoral thesis
Dimensione
3.26 MB
Formato
Adobe PDF
|
3.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.