The absence of biomarkers, limited treatment effectiveness, and high dissemination potential, all contribute to the high mortality rate of ovarian cancer, making it the second leading cause of death from gynecologic cancers. Chemoresistance develops in up to 75% of patients and contributes to reduced survival, while extensive dissemination and metastasis formation are observed in one-third of patients at diagnosis and in nearly all patients after relapse. Therefore, identifying effective biomarkers for monitoring patients’ outcomes is a strong critical need. According to the Cancer Stem Cell (CSC) theory, a subset of cells drives tumour growth and metastases. In this context, ovarian cancer spheroids represent the subpopulation responsible for cancer dissemination, reduced treatment efficacy, and poor patient prognosis. These spheroids exhibit several stem-like properties, including self-renewal, expression of stemness-related genes, increased invasiveness and greater resistance to standard therapy, making them a hallmark of advanced-stage ovarian cancer. Therefore, studying ovarian cancer spheroids could provide new insights into the molecular mechanisms driving cancer progression and may serve as a promising source for identifying potential biomarkers to predict patients’ prognosis. In this thesis, we identified novel prognostic biomarkers for high-grade serous ovarian cancer, by analysing genomic and transcriptomic profile of ovarian CSCs. We performed array-CGH analysis on cell lines and derived CSCs to identify genes predictive for patients’ prognosis. Bioinformatic analyses of genes involved in copy number alterations (CNAs) in gain revealed that AhRR and PPP1R3C expression negatively correlated with overall and progression-free survival, in ovarian cancer patients. These results and the link between AhRR and PPP1R3C levels and ovarian cancer stemness markers, suggest a role in CSCs. We also focused on CNAs in loss shared by CSCs, to identify chromosomal regions that may be important for CSCs features and, in turn, patients’ prognosis. Pathway and gene ontology analyses, of genes involved in CNAs in losses in all CSCs, revealed a significant decrease in mRNA surveillance pathway and miRNA-mediated gene silencing. Validating these changes in the TGCA cohort, we found that the loss of 4q34.3-q35.2, 8p21.2-p21.1, and 18q12.2-q23 were linked to increased genomic instability. Loss of 18q12.2-q23 was also associated with a higher tumour stage and poor prognosis. Furthermore, PPP2R2A and TPGS2A emerged as potential biomarkers. Molecular characterization of ovarian cancer spheroids provided, for the first time, TIMP1 overexpression in ovarian CSCs, suggesting a role as prognostic biomarker. TIMP1 was overexpressed in CSCs, as well as in developed chemoresistant cancer cells and anoikis-resistant cells. Database analysis revealed a correlation between TIMP1 expression and poor patients’ prognosis. TIMP1 overexpression in ovarian cancer cell lines was able to recapitulates ovarian cancer stem cell phenotype features, including increased stemness markers expression, and resistance to therapy and anoikis. TIMP1-overexpressed cells also showed powered migration in vitro and enhanced metastatic potential in vivo. Moreover, TIMP1 overexpression significantly altered their transcriptome landscape, underscoring its role in modulation of cell migration and inflammation. In conclusion, we reported for the first time, a prognostic role of AhRR and PPP1R3C expression in serous ovarian cancer. We also highlight the impact of genomic alterations on ovarian cancer progression, advancing our understanding of numerical aberrations as prognostic biomarkers. Finally, we underscored the role of TIMP1 in ovarian CSCs and its contribution to chemoresistance, recurrence, and metastasis. Taken together these findings can improve personalized medicine approaches by providing clues for novel treatments and accurate prognostic evaluations.
L'assenza di biomarcatori, la limitata efficacia dei trattamenti e l'elevato potenziale metastatico, contribuiscono alla mortalità del carcinoma ovarico (OC), rendendolo la seconda causa di morte tra le neoplasie ginecologiche. La resistenza ai trattamenti si osserva in oltre il 75% delle pazienti, riducendo significativamente la sopravvivenza. Inoltre, le metastasi sono già presenti in circa un terzo delle pazienti alla diagnosi e in quasi tutte dopo recidiva. Pertanto, identificare biomarcatori prognostici efficaci è fondamentale. Per la teoria delle cellule staminali tumorali (CSCs), un gruppo di cellule guida la crescita tumorale e la metastatizzazione. In questo contesto, gli sferoidi di OC, rappresentano la sottopopolazione responsabile della diffusione dell'OC e di una prognosi sfavorevole. Tali sferoidi presentano proprietà comuni alle CSCs, e sono un tratto distintivo per l’OC in stadio avanzato. Pertanto, lo studio di questi ultimi potrebbe fornire informazioni sui meccanismi regolanti la progressione tumorale, consentendo il riconoscimento di nuovi biomarcatori prognostici. In questa tesi, sono stati identificati nuovi biomarcatori prognostici per l’OC sieroso di alto grado, analizzando il profilo genomico e trascrittomico delle CSCs. È stata eseguita un'analisi array-CGH su linee cellulari e CSCs derivate, per identificare geni predittivi per la prognosi delle pazienti. L’analisi bioinformatica di geni coinvolti nelle alterazioni del numero di copie (CNAs) in aumento, ha rivelato che l'espressione di AhRR e PPP1R3C correlava con una ridotta sopravvivenza globale e libera da progressione. Inoltre, l’associazione tra l'espressione di questi geni e quella di marcatori di staminalità suggerisce un ruolo nelle CSCs. Successivamente, sono state analizzate le CNAs in perdita condivise dalle CSCs, per identificare regioni cromosomiche rilevanti per le loro proprietà e per la prognosi delle pazienti. Tale analisi, ha evidenziato una riduzione nei meccanismi di sorveglianza dell'mRNA e nel silenziamento genico mediato da miRNA. Validando queste perdite nella corte di pazienti TGCA, è stato riscontrato che la perdita delle regioni 4q34.3-q35.2, 8p21.2-p21.1 e 18q12.2-q23 correlava con una maggiore instabilità genomica. La perdita della regione 18q12.2-q23 era anche associata ad un avanzato stadio tumorale e ad una prognosi sfavorevole. Inoltre, PPP2R2A e TPGS2A, sono emersi come potenziali biomarcatori. La caratterizzazione molecolare degli sferoidi ha identificato per la prima volta, un’overespressione di TIMP1 nelle CSCs ovariche, suggerendone un ruolo come biomarcatore prognostico. L’espressione di TIMP1 era aumentata anche nelle cellule tumorali chemioresistenti ed in quelle anoikis-resistenti. L'analisi dei database ha rivelato una correlazione tra i livelli di TIMP1 e una prognosi sfavorevole nelle pazienti. L’overespressione di TIMP1 nelle linee cellulari di OC, ha replicato diverse proprietà delle CSCs, tra cui resistenza ai trattamenti, aumentata espressione dei marcatori di staminalità e resistenza all'anoikis. Tali linee mostravano anche un’aumentata migrazione in vitro ed un elevato potenziale metastatico in vivo. Inoltre, l’overespressione di TIMP1 alterava il profilo trascrittomico delle cellule di OC, sottolineando un ruolo nella migrazione cellulare. In conclusione, i nostri dati sottolineano per la prima volta un ruolo prognostico di AhRR e PPP1R3C nell’OC sieroso ad alto grado. Inoltre, evidenziano l’impatto che le alterazioni genomiche hanno sulla progressione dell’OC, ampliando la nostra comprensione circa l’utilizzo delle CNAs come biomarcatori prognostici. Infine, sottolineano il ruolo di TIMP1 nelle CSCs ed il suo contributo allo sviluppo di chemioresistenza, recidive e metastasi. Nel complesso, questi risultati potrebbero migliorare gli approcci alla medicina personalizzata, offrendo indicazioni per terapie e precise valutazioni prognostiche.
(2025). New Prognostic Markers in High Grade Serous Ovarian Cancer. (Tesi di dottorato, , 2025).
New Prognostic Markers in High Grade Serous Ovarian Cancer
JEMMA, ANDREA
2025
Abstract
The absence of biomarkers, limited treatment effectiveness, and high dissemination potential, all contribute to the high mortality rate of ovarian cancer, making it the second leading cause of death from gynecologic cancers. Chemoresistance develops in up to 75% of patients and contributes to reduced survival, while extensive dissemination and metastasis formation are observed in one-third of patients at diagnosis and in nearly all patients after relapse. Therefore, identifying effective biomarkers for monitoring patients’ outcomes is a strong critical need. According to the Cancer Stem Cell (CSC) theory, a subset of cells drives tumour growth and metastases. In this context, ovarian cancer spheroids represent the subpopulation responsible for cancer dissemination, reduced treatment efficacy, and poor patient prognosis. These spheroids exhibit several stem-like properties, including self-renewal, expression of stemness-related genes, increased invasiveness and greater resistance to standard therapy, making them a hallmark of advanced-stage ovarian cancer. Therefore, studying ovarian cancer spheroids could provide new insights into the molecular mechanisms driving cancer progression and may serve as a promising source for identifying potential biomarkers to predict patients’ prognosis. In this thesis, we identified novel prognostic biomarkers for high-grade serous ovarian cancer, by analysing genomic and transcriptomic profile of ovarian CSCs. We performed array-CGH analysis on cell lines and derived CSCs to identify genes predictive for patients’ prognosis. Bioinformatic analyses of genes involved in copy number alterations (CNAs) in gain revealed that AhRR and PPP1R3C expression negatively correlated with overall and progression-free survival, in ovarian cancer patients. These results and the link between AhRR and PPP1R3C levels and ovarian cancer stemness markers, suggest a role in CSCs. We also focused on CNAs in loss shared by CSCs, to identify chromosomal regions that may be important for CSCs features and, in turn, patients’ prognosis. Pathway and gene ontology analyses, of genes involved in CNAs in losses in all CSCs, revealed a significant decrease in mRNA surveillance pathway and miRNA-mediated gene silencing. Validating these changes in the TGCA cohort, we found that the loss of 4q34.3-q35.2, 8p21.2-p21.1, and 18q12.2-q23 were linked to increased genomic instability. Loss of 18q12.2-q23 was also associated with a higher tumour stage and poor prognosis. Furthermore, PPP2R2A and TPGS2A emerged as potential biomarkers. Molecular characterization of ovarian cancer spheroids provided, for the first time, TIMP1 overexpression in ovarian CSCs, suggesting a role as prognostic biomarker. TIMP1 was overexpressed in CSCs, as well as in developed chemoresistant cancer cells and anoikis-resistant cells. Database analysis revealed a correlation between TIMP1 expression and poor patients’ prognosis. TIMP1 overexpression in ovarian cancer cell lines was able to recapitulates ovarian cancer stem cell phenotype features, including increased stemness markers expression, and resistance to therapy and anoikis. TIMP1-overexpressed cells also showed powered migration in vitro and enhanced metastatic potential in vivo. Moreover, TIMP1 overexpression significantly altered their transcriptome landscape, underscoring its role in modulation of cell migration and inflammation. In conclusion, we reported for the first time, a prognostic role of AhRR and PPP1R3C expression in serous ovarian cancer. We also highlight the impact of genomic alterations on ovarian cancer progression, advancing our understanding of numerical aberrations as prognostic biomarkers. Finally, we underscored the role of TIMP1 in ovarian CSCs and its contribution to chemoresistance, recurrence, and metastasis. Taken together these findings can improve personalized medicine approaches by providing clues for novel treatments and accurate prognostic evaluations.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_847325.pdf
embargo fino al 20/01/2027
Descrizione: New Prognostic Markers in High Grade Serous Ovarian Cancer
Tipologia di allegato:
Doctoral thesis
Dimensione
6.65 MB
Formato
Adobe PDF
|
6.65 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.