The timing of deformation in the central Southern Alps (cSA) of Italy has been debated due to challenges in determining both relative and absolute chronologies in this area of the European Alps. Past studies provided relative time constraints via crosscutting relationships among faults, folds, and intrusive bodies, supported by stratigraphy, while absolute ages have been determined for fault activity in the crystalline basement and for magmatic bodies cutting across primary structures. These efforts have clarified the tectonic and sedimentary evolution of the cSA during the Alpine orogeny. However, many studies relied on qualitative approaches or broad time estimates, leaving uncertainties about the precise timing of events, particularly in the Mesozoic sedimentary cover. The absence of absolute time constraints in the frontal cSA relates to the prevalence of brittle deformation in the Mesozoic carbonate sequence. Though crustal faults and fractures have been studied, absolute dating of slip surfaces and fractures remained limited until recent in-situ U-Pb dating advancements on carbonates. This study applies in-situ U-Pb dating to fracture-related carbonates from major fault zones within the Mesozoic sedimentary cover of the cSA. The first focus area is the Seriana Valley and the Amora Fault System (AFS), a Jurassic fault zone largely preserved despite Alpine deformations. The AFS experienced multiple deformation phases, from Jurassic rifting through Alpine compression. To constrain these events, structural and kinematic features of fault planes and shear vein systems were analyzed, and syn-tectonic carbonates from the AFS damage zone were sampled. Microstructural and petrographic analyses identified ten carbonate phases, which were examined using geochemical and thermometric tests. These analyses enabled reconstruction of the AFS’s temporal evolution and insights into paleo-fluid characteristics. Five tectonic stages were identified, with AFS activity beginning in the Early Jurassic (192.4 ± 8.4 to 169.4 ± 8.6 Ma) during the Alpine Tethys opening. This phase extended to Aalenian times, underscoring the fault’s persistence, with high-temperature paleo-fluid circulation (up to 190 °C). The AFS reactivated in the Early Cretaceous due to faulting along the eastern Lombardian Basin and became active again in early Alpine compression (100.1 ± 6.5 to 89.2 ± 7 Ma) as a left-lateral strike-slip fault. After an inactive phase in the middle Eocene, when andesitic dikes cut the AFS, it reactivated in the Oligo-Miocene during late Alpine compressions. The second part examines syn-kinematic carbonates associated with thrust faults in the Mesozoic cover of the cSA. Calc-mylonites, fault-grown fibres, and carbonate veins, previously analyzed through meso- and microstructural studies, were further examined using O-C stable isotope analysis and in-situ U-Pb dating. These findings integrate with cSA evolution models, indicating Late Cretaceous ages (98.2 ± 9.9 to 82.1 ± 6.8 Ma) for thrusting activity extending to the frontal belt and overlapping with activity on the Orobic Thrust, the innermost structure of the cSA. These data represent the first direct evidence of Late Cretaceous deformation across much of the cSA, previously inferred only from indirect evidence. Additional constraints were obtained for inherited faults reactivating with transtensional kinematics from the Oligocene onward, supporting recent activity in the Alpine chain's frontal section. This study significantly advances the understanding of the cSA’s complex tectonic history by providing new data on major tectonic events' timing, refining models, and emphasizing the critical role of pre-Alpine faults in subsequent Alpine compression. It confirms that the cSA formed as a doubly vergent pre-collisional belt in the Late Cretaceous.
La deformazione nel Sudalpino centrale (cSA) è stata oggetto di dibattito a causa delle difficoltà nel determinare le cronologie relative e assolute in questa zona delle Alpi. Studi precedenti hanno fornito vincoli temporali relativi attraverso le relazioni di taglio tra faglie, pieghe e corpi intrusivi, supportati dalla stratigrafia, mentre le età assolute sono state determinate per l'attività delle faglie nel basamento cristallino e per i corpi magmatici che attraversano le strutture principali. Questi studi hanno chiarito l'evoluzione tettonica e sedimentaria delle cSA durante l'orogenesi alpina. Tuttavia, molti studi si sono basati su approcci qualitativi o su ampie stime temporali, lasciando incertezze sulla tempistica precisa degli eventi. Sebbene faglie crostali e fratture siano state studiate, la datazione assoluta delle superfici di scorrimento e delle fratture è rimasta limitata fino ai recenti progressi nella datazione U-Pb in-situ dei carbonati. Questo studio applica la datazione U-Pb in-situ ai carbonati associati alle fratture campionati nelle principali zone di faglia all'interno della copertura sedimentaria mesozoica delle cSA. L'area di focus iniziale è la Valle Seriana e il sistema di faglie Amora (AFS), una zona di faglia Giurassica ben preservata nonostante le deformazioni alpine. L'AFS ha attraversato molteplici fasi di deformazione, dal rifting giurassico alla compressione alpina. Per definire temporalmente questi eventi, sono state analizzate le caratteristiche strutturali e cinematiche delle superfici di faglia e dei sistemi di vene di taglio, e sono stati campionati i carbonati sin-tettonici della zona di danneggiamento dell'AFS. Le analisi microstrutturali e petrografiche hanno identificato dieci fasi carbonatiche, esaminate tramite analisi geochimiche e termometriche. Queste hanno permesso di ricostruire l'evoluzione temporale dell'AFS e di ottenere informazioni sulle caratteristiche dei paleo-fluidi. Sono stati identificati cinque stadi tettonici, con l'attività dell'AFS che è iniziata nel Giurassico inferiore (192,4 ± 8,4 a 169,4 ± 8,6 Ma) durante l'apertura della Tetide Alpina. Questa fase si è estesa fino all'Aaleniano, evidenziando la persistenza della faglia e la circolazione di paleo-fluidi ad alta temperatura (fino a 190 °C). L'AFS si è riattivato nel Cretaceo inferiore a causa dell'attività tettonica lungo il Bacino Lombardo orientale ed è tornato attivo nella fase iniziale della compressione alpina (100,1 ± 6,5 a 89,2 ± 7 Ma) come sistema di faglie trascorrente sinistro. Dopo una fase inattiva nell'Eocene medio, durante la quale dicchi andesitici hanno attraversato l'AFS, il sistema si è riattivato nell'Oligo-Miocene durante le compressioni alpine tardive. La seconda parte esamina i carbonati sin-kinematici associati a faglie di thrust nella copertura mesozoica delle cSA. Calc-miloniti, fibre cresciute lungo le faglie e vene di carbonato, analizzati in precedenza attraverso studi meso- e microstrutturali, sono stati ulteriormente esaminati utilizzando l'analisi degli isotopi stabili O-C e la datazione U-Pb in-situ. Questi risultati si integrano con i modelli di evoluzione delle cSA, indicando età del Cretaceo superiore (98,2 ± 9,9 a 82,1 ± 6,8 Ma) per l'attività di thrust che si estende fino alla parte frontale della catena, sovrapponendosi all'attività della spinta orobica, la struttura più interna delle cSA. Questi dati rappresentano la prima evidenza diretta di una fase di deformazione del Cretaceo superiore che ha interessato gran parte delle cSA, precedentemente ipotizzata solo da evidenze indirette. Questo studio contribuisce significativamente la comprensione della complessa storia tettonica delle cSA. Conferma inoltre che il Sudalpino si era già sviluppate come catena pre-collisionale a doppia vergenza fin dal Cretaceo superiore.
(2025). Tectonic Evolution of the central Southern Alps from Jurassic to Neogene: insights from Structural, Geochemical and Thermometric Analyses of Fracture-related Carbonates. (Tesi di dottorato, , 2025).
Tectonic Evolution of the central Southern Alps from Jurassic to Neogene: insights from Structural, Geochemical and Thermometric Analyses of Fracture-related Carbonates
ROCCA, MARTINA
2025
Abstract
The timing of deformation in the central Southern Alps (cSA) of Italy has been debated due to challenges in determining both relative and absolute chronologies in this area of the European Alps. Past studies provided relative time constraints via crosscutting relationships among faults, folds, and intrusive bodies, supported by stratigraphy, while absolute ages have been determined for fault activity in the crystalline basement and for magmatic bodies cutting across primary structures. These efforts have clarified the tectonic and sedimentary evolution of the cSA during the Alpine orogeny. However, many studies relied on qualitative approaches or broad time estimates, leaving uncertainties about the precise timing of events, particularly in the Mesozoic sedimentary cover. The absence of absolute time constraints in the frontal cSA relates to the prevalence of brittle deformation in the Mesozoic carbonate sequence. Though crustal faults and fractures have been studied, absolute dating of slip surfaces and fractures remained limited until recent in-situ U-Pb dating advancements on carbonates. This study applies in-situ U-Pb dating to fracture-related carbonates from major fault zones within the Mesozoic sedimentary cover of the cSA. The first focus area is the Seriana Valley and the Amora Fault System (AFS), a Jurassic fault zone largely preserved despite Alpine deformations. The AFS experienced multiple deformation phases, from Jurassic rifting through Alpine compression. To constrain these events, structural and kinematic features of fault planes and shear vein systems were analyzed, and syn-tectonic carbonates from the AFS damage zone were sampled. Microstructural and petrographic analyses identified ten carbonate phases, which were examined using geochemical and thermometric tests. These analyses enabled reconstruction of the AFS’s temporal evolution and insights into paleo-fluid characteristics. Five tectonic stages were identified, with AFS activity beginning in the Early Jurassic (192.4 ± 8.4 to 169.4 ± 8.6 Ma) during the Alpine Tethys opening. This phase extended to Aalenian times, underscoring the fault’s persistence, with high-temperature paleo-fluid circulation (up to 190 °C). The AFS reactivated in the Early Cretaceous due to faulting along the eastern Lombardian Basin and became active again in early Alpine compression (100.1 ± 6.5 to 89.2 ± 7 Ma) as a left-lateral strike-slip fault. After an inactive phase in the middle Eocene, when andesitic dikes cut the AFS, it reactivated in the Oligo-Miocene during late Alpine compressions. The second part examines syn-kinematic carbonates associated with thrust faults in the Mesozoic cover of the cSA. Calc-mylonites, fault-grown fibres, and carbonate veins, previously analyzed through meso- and microstructural studies, were further examined using O-C stable isotope analysis and in-situ U-Pb dating. These findings integrate with cSA evolution models, indicating Late Cretaceous ages (98.2 ± 9.9 to 82.1 ± 6.8 Ma) for thrusting activity extending to the frontal belt and overlapping with activity on the Orobic Thrust, the innermost structure of the cSA. These data represent the first direct evidence of Late Cretaceous deformation across much of the cSA, previously inferred only from indirect evidence. Additional constraints were obtained for inherited faults reactivating with transtensional kinematics from the Oligocene onward, supporting recent activity in the Alpine chain's frontal section. This study significantly advances the understanding of the cSA’s complex tectonic history by providing new data on major tectonic events' timing, refining models, and emphasizing the critical role of pre-Alpine faults in subsequent Alpine compression. It confirms that the cSA formed as a doubly vergent pre-collisional belt in the Late Cretaceous.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_805083.pdf
accesso aperto
Descrizione: Tectonic Evolution of the central Southern Alps from Jurassic to Neogene: insights from Structural, Geochemical and Thermometric Analyses of Fracture-related Carbonates
Tipologia di allegato:
Doctoral thesis
Dimensione
15.03 MB
Formato
Adobe PDF
|
15.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.