Given a general complete Riemannian manifold M, we introduce the concept of "local Moser-Trudinger inequality on W1,n(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,n}(M)$$\end{document}". We show how the validity of the Moser-Trudinger inequality can be extended from a local to a global scale under additional assumptions: either by assuming the validity of the Poincar & eacute; inequality, or by imposing a stronger norm condition. We apply these results to Hadamard manifolds. The technique is general enough to be applicable also in sub-Riemannian settings, such as the Heisenberg group.

Fontana, L., Morpurgo, C., Qin, L. (2024). Moser–Trudinger inequalities: from local to global. ANNALI DI MATEMATICA PURA ED APPLICATA [10.1007/s10231-024-01481-9].

Moser–Trudinger inequalities: from local to global

Fontana L.;
2024

Abstract

Given a general complete Riemannian manifold M, we introduce the concept of "local Moser-Trudinger inequality on W1,n(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,n}(M)$$\end{document}". We show how the validity of the Moser-Trudinger inequality can be extended from a local to a global scale under additional assumptions: either by assuming the validity of the Poincar & eacute; inequality, or by imposing a stronger norm condition. We apply these results to Hadamard manifolds. The technique is general enough to be applicable also in sub-Riemannian settings, such as the Heisenberg group.
Articolo in rivista - Articolo scientifico
26D10; 46E36; Moser–Trudinger inequality; Poincare’ inequality; Riemannian manifolds;
English
30-lug-2024
2024
reserved
Fontana, L., Morpurgo, C., Qin, L. (2024). Moser–Trudinger inequalities: from local to global. ANNALI DI MATEMATICA PURA ED APPLICATA [10.1007/s10231-024-01481-9].
File in questo prodotto:
File Dimensione Formato  
Fontana-Morpurgo-Qin-2024-Ann Mat Pura Appl-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 366 kB
Formato Adobe PDF
366 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/538061
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact