Given a general complete Riemannian manifold M, we introduce the concept of "local Moser-Trudinger inequality on W1,n(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,n}(M)$$\end{document}". We show how the validity of the Moser-Trudinger inequality can be extended from a local to a global scale under additional assumptions: either by assuming the validity of the Poincar & eacute; inequality, or by imposing a stronger norm condition. We apply these results to Hadamard manifolds. The technique is general enough to be applicable also in sub-Riemannian settings, such as the Heisenberg group.
Fontana, L., Morpurgo, C., Qin, L. (2024). Moser–Trudinger inequalities: from local to global. ANNALI DI MATEMATICA PURA ED APPLICATA [10.1007/s10231-024-01481-9].
Moser–Trudinger inequalities: from local to global
Fontana L.;
2024
Abstract
Given a general complete Riemannian manifold M, we introduce the concept of "local Moser-Trudinger inequality on W1,n(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,n}(M)$$\end{document}". We show how the validity of the Moser-Trudinger inequality can be extended from a local to a global scale under additional assumptions: either by assuming the validity of the Poincar & eacute; inequality, or by imposing a stronger norm condition. We apply these results to Hadamard manifolds. The technique is general enough to be applicable also in sub-Riemannian settings, such as the Heisenberg group.File | Dimensione | Formato | |
---|---|---|---|
Fontana-Morpurgo-Qin-2024-Ann Mat Pura Appl-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
366 kB
Formato
Adobe PDF
|
366 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.