This thesis focuses on the mineralogical and crystallographic study of (Ca-REE) fluorcarbonates, particularly on bastnäsite-synchysite polysomatic series. These minerals are the primary ores for rare earth elements (REE), which are crucial for modern technologies. Despite their importance, several questions persist about REE behaviour in natural systems, especially regarding their transport and crystallization. Polysomatic series like (Ca-REE) fluorcarbonates are key to understanding these processes, as their intergrowth patterns can indicate changes in crystallization conditions, such as fluid composition and temperature. This thesis employs a multi-methodological approach, integrating Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) coupled with energy dispersive spectroscopy (EDS), electron backscattered diffraction (EBSD), single crystals X-ray diffraction (SCXRD) and precession-assisted three-dimensional electron diffraction (3DED) to explore the micro- and nanostructure of (Ca-REE) fluorcarbonates. Initially, the potentialities of Raman spectroscopy and EBSD in the microscopic characterization of (Ca-REE) fluorcarbonates were evaluated to provide a “road map” for further investigations using TEM. EBSD was effective to establish the sample orientation, but it failed to distinguish between different polysomes. Micro-Raman spectroscopy allowed the distinction of polysomes based on the differences in intensity and position of the symmetric stretching vibration (v1) of the carbonate group (CO32-). However, while the Raman signal is sensitive to different Ca/(Ca+REE) ratios, it is not sensitive to the ordered distribution of Ca-poor and Ca-rich lamellae within the analyzed volume, complicating the unambiguous identification of polysomes. Additionally, the observed microstructure suggests a primary growth mechanism in which fluorcarbonates crystallize from a fluid close to thermodynamic equilibrium, with conditions that quickly and repeatedly crossed the parisite–bastnäsite stability boundary. Then, a variety of (Ca-REE) fluorcarbonates with different morphologies and compositions were studied. After an investigation spanning from the microscale to the atomic scale, a possible scenario for their formation was proposed. It is assumed that the different (Ca-REE) fluorcarbonates crystallized sequentially, under decreasing temperature and increasing fluid fractionation. The different morphologies, in this case, besides being influenced by the dominant REE in the fluid, were also affected by varying temperatures and cooling rates. Moreover, the study highlights that nature may efficiently separate REE from one another. The understanding of this natural process may suggest routes for improving current metallurgical separation processes. Finally, a focused study on synchysite-(Ce) was performed to determine its structure and microstructure, with the objectives of: i) comparing the structural and microstructural data obtained with the limited available literature; ii) comparing SCXRD and 3DED structural data, with 3DED being applied to this mineral group for the first time; and iii) gathering insights into crystal growth and REE fractionation. The findings revealed a complex microstructure suggesting a growth mechanism through screw dislocations. Overall, this study provides insights into how different polysomes form and evolve, indicating clues regarding fluid chemistry during crystallization, partitioning of REE and crystallization pathways. Indeed, intergrowths reflect the dynamic conditions of REE mineral formation, where different REE phases precipitate under changing environmental conditions. Moreover, the work sheds light on the role of polysomatism and polytypism in controlling REE mobility in hydrothermal systems, with implications for ore genesis.
Questa tesi si concentra sullo studio mineralogico e cristallografico dei fluorcarbonati di Ca e REE (CRFC), in particolare sulla serie polisomatica bastnäsite-synchysite. Questi minerali sono la principale fonte dalla quale vengono estratte le REE, elementi essenziali per le tecnologie moderne. Nonostante la loro importanza, rimangono numerosi interrogativi sul comportamento delle REE nei sistemi naturali, in particolare riguardo ai meccanismi di trasporto e cristallizzazione. Le serie polisomatiche come i CRFC sono fondamentali per comprendere questi processi, poiché le intercrescite sintattiche di due o più polisomi possono indicare variazioni nelle condizioni di cristallizzazione, come la composizione dei fluidi e la temperatura. Questa tesi adotta un approccio multi-metodologico, utilizzando spettroscopia Raman, microscopia elettronica a scansione (SEM) e a trasmissione (TEM) accoppiate a spettroscopia a dispersione di energia (EDS), diffrazione elettronica a retrodiffusione (EBSD), diffrazione a raggi X da singolo cristallo (SCXRD) e diffrazione elettronica in tre dimensioni con precessione (3DED), per esplorare la micro- e nanostruttura dei CRFC. Inizialmente, sono state valutate le potenzialità della spettroscopia Raman e dell'EBSD nella caratterizzazione microscopica dei CRFC per fornire una "mappa" per ulteriori indagini mediante TEM. L'EBSD risulta efficace nel determinare l'orientamento del campione, ma non è in grado di distinguere tra diversi polisomi. La micro-spettroscopia Raman ha permesso di distinguere i polisomi sulla base delle differenze di intensità e posizione delle bande Raman della vibrazione simmetrica di stretching (v1) del gruppo carbonato (CO32-). Tuttavia, sebbene il segnale Raman sia sensibile ai diversi rapporti Ca/(Ca+REE), non è sensibile al grado di ordinamento delle lamelle Ca all'interno del volume analizzato, rendendo complessa l'identificazione univoca dei polisomi. Inoltre, la microstruttura osservata suggerisce un meccanismo di crescita in cui i CRFC cristallizzano da un fluido vicino all’equilibrio termodinamico, con condizioni che attraversano ripetutamente e rapidamente il confine di stabilità tra parisite e bastnäsite. Successivamente, sono stati studiati vari CRFC con diverse morfologie e composizioni. Dopo un'analisi che spazia dalla scala microscopica a quella atomica, è stato proposto un possibile scenario per la loro formazione. Si ipotizza che i diversi CRFC siano cristallizzati in sequenza, con temperature in diminuzione e frazionamento crescente del fluido. Le diverse morfologie, in questo caso, oltre a essere influenzate dalla REE dominante nel fluido, sono state anche condizionate dalle variazioni di temperatura e dai tassi di raffreddamento. Inoltre, lo studio evidenzia che in natura le REE possono essere separate in modo efficiente. Infine, è stato condotto uno studio mirato sulla synchysite-(Ce) per determinarne struttura e microstruttura, con gli obiettivi di: i) confrontare i dati strutturali e microstrutturali ottenuti con la scarsa letteratura disponibile; ii) confrontare i dati strutturali SCXRD e 3DED, applicando per la prima volta la 3DED a questa famiglia di minerali; e iii) raccogliere informazioni sulla crescita cristallina e sul frazionamento delle REE. I risultati hanno rivelato una microstruttura complessa, suggerendo un meccanismo di crescita tramite dislocazioni a vite. In generale, questo studio offre una visione su come si formano ed evolvono i diversi polisomi, fornendo indizi sulla chimica dei fluidi durante la cristallizzazione e la distribuzione delle REE. Le intercrescite riflettono le condizioni dinamiche della formazione dei minerali di REE, con la precipitazione di diverse fasi di REE in risposta ai cambiamenti nel sistema. Inoltre, il lavoro evidenzia il ruolo del polisomatismo e del politipismo nel controllo della mobilità delle REE nei sistemi idrotermali, con implicazioni per quanto riguarda la genesi dei giacimenti.
(2025). Micro and Nanoscale Study of Calcium and Rare Earth Element Fluorcarbonates: Establishing a Link Between Mineral Structure and Genesis. (Tesi di dottorato, , 2025).
Micro and Nanoscale Study of Calcium and Rare Earth Element Fluorcarbonates: Establishing a Link Between Mineral Structure and Genesis
CONCONI, ROBERTO
2025
Abstract
This thesis focuses on the mineralogical and crystallographic study of (Ca-REE) fluorcarbonates, particularly on bastnäsite-synchysite polysomatic series. These minerals are the primary ores for rare earth elements (REE), which are crucial for modern technologies. Despite their importance, several questions persist about REE behaviour in natural systems, especially regarding their transport and crystallization. Polysomatic series like (Ca-REE) fluorcarbonates are key to understanding these processes, as their intergrowth patterns can indicate changes in crystallization conditions, such as fluid composition and temperature. This thesis employs a multi-methodological approach, integrating Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) coupled with energy dispersive spectroscopy (EDS), electron backscattered diffraction (EBSD), single crystals X-ray diffraction (SCXRD) and precession-assisted three-dimensional electron diffraction (3DED) to explore the micro- and nanostructure of (Ca-REE) fluorcarbonates. Initially, the potentialities of Raman spectroscopy and EBSD in the microscopic characterization of (Ca-REE) fluorcarbonates were evaluated to provide a “road map” for further investigations using TEM. EBSD was effective to establish the sample orientation, but it failed to distinguish between different polysomes. Micro-Raman spectroscopy allowed the distinction of polysomes based on the differences in intensity and position of the symmetric stretching vibration (v1) of the carbonate group (CO32-). However, while the Raman signal is sensitive to different Ca/(Ca+REE) ratios, it is not sensitive to the ordered distribution of Ca-poor and Ca-rich lamellae within the analyzed volume, complicating the unambiguous identification of polysomes. Additionally, the observed microstructure suggests a primary growth mechanism in which fluorcarbonates crystallize from a fluid close to thermodynamic equilibrium, with conditions that quickly and repeatedly crossed the parisite–bastnäsite stability boundary. Then, a variety of (Ca-REE) fluorcarbonates with different morphologies and compositions were studied. After an investigation spanning from the microscale to the atomic scale, a possible scenario for their formation was proposed. It is assumed that the different (Ca-REE) fluorcarbonates crystallized sequentially, under decreasing temperature and increasing fluid fractionation. The different morphologies, in this case, besides being influenced by the dominant REE in the fluid, were also affected by varying temperatures and cooling rates. Moreover, the study highlights that nature may efficiently separate REE from one another. The understanding of this natural process may suggest routes for improving current metallurgical separation processes. Finally, a focused study on synchysite-(Ce) was performed to determine its structure and microstructure, with the objectives of: i) comparing the structural and microstructural data obtained with the limited available literature; ii) comparing SCXRD and 3DED structural data, with 3DED being applied to this mineral group for the first time; and iii) gathering insights into crystal growth and REE fractionation. The findings revealed a complex microstructure suggesting a growth mechanism through screw dislocations. Overall, this study provides insights into how different polysomes form and evolve, indicating clues regarding fluid chemistry during crystallization, partitioning of REE and crystallization pathways. Indeed, intergrowths reflect the dynamic conditions of REE mineral formation, where different REE phases precipitate under changing environmental conditions. Moreover, the work sheds light on the role of polysomatism and polytypism in controlling REE mobility in hydrothermal systems, with implications for ore genesis.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_813836.pdf
accesso aperto
Descrizione: Tesi
Tipologia di allegato:
Doctoral thesis
Dimensione
7.28 MB
Formato
Adobe PDF
|
7.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.