Background: Split liver transplantation is a valuable means of mitigating organ scarcity but requires significant surgical and logistical effort. Ex vivo splitting is associated with prolonged cold ischemia, with potentially negative effects on organ viability. Machine perfusion can mitigate the effects of ischemia-reperfusion injury by restoring cellular energy and improving outcomes. Methods: We describe a novel technique of full-left/full-right liver splitting, with splitting and reconstruction of the vena cava and middle hepatic vein, with dual arterial and portal hypothermic oxygenated machine perfusion. The accompanying video depicts the main surgical passages, notably the splitting of the vena cava and middle hepatic vein, the parenchymal transection, and the venous reconstruction. Results: The left graft was allocated to a pediatric patient having methylmalonic aciduria, whereas the right graft was allocated to an adult patient affected by hepatocellular carcinoma and cirrhosis. Conclusions: This technique allows ex situ splitting, counterbalancing prolonged ischemia with the positive effects of hypothermic oxygenated machine perfusion on graft viability. The venous outflow is preserved, safeguarding both grafts from venous congestion; all reconstructions can be performed ex situ, minimizing warm ischemia. Moreover, there is no need for highly skilled surgeons to reach the donor hospital, thereby simplifying logistical aspects.

Cillo, U., Lauterio, A., Furlanetto, A., Canitano, N., Polacco, M., Buscemi, V., et al. (2024). Full-left/Full-right Liver Splitting with Middle Hepatic Vein and Caval Partition during Dual Hypothermic Oxygenated Machine Perfusion. TRANSPLANTATION, 108(6), 1417-1421 [10.1097/TP.0000000000005039].

Full-left/Full-right Liver Splitting with Middle Hepatic Vein and Caval Partition during Dual Hypothermic Oxygenated Machine Perfusion

Lauterio A.;De Carlis L.;
2024

Abstract

Background: Split liver transplantation is a valuable means of mitigating organ scarcity but requires significant surgical and logistical effort. Ex vivo splitting is associated with prolonged cold ischemia, with potentially negative effects on organ viability. Machine perfusion can mitigate the effects of ischemia-reperfusion injury by restoring cellular energy and improving outcomes. Methods: We describe a novel technique of full-left/full-right liver splitting, with splitting and reconstruction of the vena cava and middle hepatic vein, with dual arterial and portal hypothermic oxygenated machine perfusion. The accompanying video depicts the main surgical passages, notably the splitting of the vena cava and middle hepatic vein, the parenchymal transection, and the venous reconstruction. Results: The left graft was allocated to a pediatric patient having methylmalonic aciduria, whereas the right graft was allocated to an adult patient affected by hepatocellular carcinoma and cirrhosis. Conclusions: This technique allows ex situ splitting, counterbalancing prolonged ischemia with the positive effects of hypothermic oxygenated machine perfusion on graft viability. The venous outflow is preserved, safeguarding both grafts from venous congestion; all reconstructions can be performed ex situ, minimizing warm ischemia. Moreover, there is no need for highly skilled surgeons to reach the donor hospital, thereby simplifying logistical aspects.
Articolo in rivista - Articolo scientifico
Adult; Carcinoma, Hepatocellular; Cold Ischemia; Hepatic Veins; Humans; Hypothermia, Induced; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Male; Organ Preservation; Perfusion; Reperfusion Injury; Treatment Outcome
English
1-giu-2024
2024
108
6
1417
1421
reserved
Cillo, U., Lauterio, A., Furlanetto, A., Canitano, N., Polacco, M., Buscemi, V., et al. (2024). Full-left/Full-right Liver Splitting with Middle Hepatic Vein and Caval Partition during Dual Hypothermic Oxygenated Machine Perfusion. TRANSPLANTATION, 108(6), 1417-1421 [10.1097/TP.0000000000005039].
File in questo prodotto:
File Dimensione Formato  
Cillo-2024-Transplantation-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 527.86 kB
Formato Adobe PDF
527.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/536381
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
Social impact