Alkaloids are naturally occurring metabolites with a wide variety of pharmacological activities and applications in science, particularly in medicinal chemistry as anti-inflammatory drugs. Because they can be labelled as active or inactive compounds against the inflammatory biological response, the aim of this work was to calibrate quantitative structure-activity relationships (QSARs) using machine learning classifiers to predict anti-inflammatory activity based on the molecular structures of alkaloids. A dataset of 100 alkaloids (58 active and 42 inactive) was retrieved from two systematic reviews. Molecules were properly curated, and the molecular geometries of the compounds were optimized using the semi-empirical method (PM3) to calculate molecular descriptors, binary fingerprints (extended-connectivity fingerprints and path fingerprints) and MACCS (Molecular ACCess System) structural keys. Then, we calibrated the QSAR models using well-known linear and non-linear machine learning classifiers, i.e., partial least squares discriminant analysis (PLSDA), random forests (RF), adaptive boosting (AdaBoost), k-nearest neighbors (kNN), N-nearest neighbors (N3) and binned nearest neighbors (BNN). For validation purposes, the dataset was randomly split into a training set and a test set in a 70:30 ratio. When using molecular descriptors, genetic algorithms-variable subset selection (GAs-VSS) was used for supervised feature selection. During the calibration of the models, a five-fold Venetian blinds cross-validation was used to optimize the classifier parameters and to control the presence of overfitting. The performance of the models was quantified by means of the non-error rate (NER) statistical parameter.
Rojas, C., Muñoz, D., Cordero, I., Tenesaca, B., Ballabio, D. (2024). Development of Quantitative Structure–Anti-Inflammatory Relationships of Alkaloids. CHEMISTRY PROCEEDINGS, 16(1) [10.3390/ecsoc-28-20159].
Development of Quantitative Structure–Anti-Inflammatory Relationships of Alkaloids
Ballabio, Davide
2024
Abstract
Alkaloids are naturally occurring metabolites with a wide variety of pharmacological activities and applications in science, particularly in medicinal chemistry as anti-inflammatory drugs. Because they can be labelled as active or inactive compounds against the inflammatory biological response, the aim of this work was to calibrate quantitative structure-activity relationships (QSARs) using machine learning classifiers to predict anti-inflammatory activity based on the molecular structures of alkaloids. A dataset of 100 alkaloids (58 active and 42 inactive) was retrieved from two systematic reviews. Molecules were properly curated, and the molecular geometries of the compounds were optimized using the semi-empirical method (PM3) to calculate molecular descriptors, binary fingerprints (extended-connectivity fingerprints and path fingerprints) and MACCS (Molecular ACCess System) structural keys. Then, we calibrated the QSAR models using well-known linear and non-linear machine learning classifiers, i.e., partial least squares discriminant analysis (PLSDA), random forests (RF), adaptive boosting (AdaBoost), k-nearest neighbors (kNN), N-nearest neighbors (N3) and binned nearest neighbors (BNN). For validation purposes, the dataset was randomly split into a training set and a test set in a 70:30 ratio. When using molecular descriptors, genetic algorithms-variable subset selection (GAs-VSS) was used for supervised feature selection. During the calibration of the models, a five-fold Venetian blinds cross-validation was used to optimize the classifier parameters and to control the presence of overfitting. The performance of the models was quantified by means of the non-error rate (NER) statistical parameter.File | Dimensione | Formato | |
---|---|---|---|
Rojas-2024-Chem. Proc-VoR.pdf
accesso aperto
Descrizione: This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
694.17 kB
Formato
Adobe PDF
|
694.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.