The application of nanotechnology in the medical field, named nanomedicine, has gained great attention in the last years, in particular concerning the use of nanoparticles (NPs) for the delivery of drugs. Among different kind of NPs, especially organic, lipid-based ones have obtained success and, in some cases, approval for clinical applications. However, the clinical translation of nano-drug delivery tools is still extremely limited, and their efficacy is severely hindered by biological barriers. Among those, cellular internalization and endosomal escape processes, both fundamental for clinical efficacy, are considered a bottleneck step. Much is still unclear about these processes, mainly due to limitations in the assays and techniques commonly employed for their investigation. Indeed, these techniques usually are based on a not reliable indirect visualization (i.e. activity/sensor-based assays) or on the fluorescent labelling of the NPs, where conjugated fluorochrome could alter their cellular interaction properties or detach from them, leading to misinterpretation of results. In this sense, direct imaging of organic NPs would be preferred, but that is challenged by their own elemental composition which closely resemble that of biological samples. In the present PhD project, an innovative hybrid nanosystem based on combination of liposomes and gold nanoparticles (AuNPs) was developed, with the purpose of investigating its interaction with cell (attributable to the lipidic shell), by taking advantage of the strong AuNPs optical properties. The project is part of the larger, EU-funded, SMART-Electron project, which aims at modification and optimization of already innovative dynamic TEM technique. The introduction of Photonic-based free ELectron Modulator (PELM) to accurately engineer the electron beam will be coupled with a pump-probe setup, in which precisely temporized optical pulses will be employed for a dynamic investigation of the samples, following stimulation from an external trigger. This will allow for dynamic investigation of interaction between nanomaterials and biological samples, with unprecedented spatio-temporal resolution. The liposomes and the hybrid NPs, respectively named Lipo and Lipo-Gold, were synthetized by a modified thin lipid film hydration approach and optimized and characterized by standard techniques. Then, their biological compatibility and cellular interaction properties were assessed by fluorescent labelling and no differences between Lipo and Lipo-Gold were observed. These results demonstrated the possibility of using Lipo-Gold, as a model to investigate liposomes-cell interactions, exploiting the optical and plasmonic characteristic of AuNPs. Unlabeled Lipo-Gold’s cellular internalization was investigated by hyperspectral darkfield microscopy and TEM, suggesting that NPs are capable of entering cells through endocytosis mechanisms, following the endo-lysosomal pathway. Finally, during a visiting period in Prof. Paul Verkade’s laboratory (Bristol University, UK), correlative light-electron microscopy (CLEM) experiments were performed. Fluorescence signal coming from lipidic component of Lipo-Gold and the electron dense signal coming from AuNPs were found to colocalize in intracellular membrane compartments. In parallel to these experiments, the dynamic TEM platform was setup in our laboratory in UniMiB Department of Material Science, and we were able to demonstrate the emission of optical-driven pulsed electron beam, successful light-electron interaction at the PELM stage and the possibility of driving a third optical laser onto the sample. Further extension of this PhD work foresees the employment of developed Lipo-Gold for dynamic TEM-based biological experiments.

L'applicazione delle nanotecnologie in campo medico, denominata nanomedicina, ha guadagnato grande attenzione negli ultimi anni, in particolare per quanto riguarda l'uso di nanoparticelle (NPs) per la somministrazione di farmaci. Tra i diversi tipi di NPs, soprattutto quelli organici a base lipidica hanno ottenuto successo e, in alcuni casi, approvazione per applicazioni cliniche. Tuttavia, la transizione clinica è ancora estremamente limitata e la loro efficacia è fortemente ostacolata dalle barriere biologiche. Tra queste, i processi di internalizzazione cellulare e di escape endosomiale, entrambi fondamentali per l'efficacia clinica, sono considerati un passaggio chiave. Molto ancora non è chiaro su questi processi, soprattutto a causa di limiti dei saggi e delle tecniche comunemente impiegati per la loro indagine. Infatti, queste tecniche si basano solitamente su una visualizzazione indiretta non affidabile (cioè saggi basati su attività/sensori) o su marcatura fluorescente delle NPs, dove il fluorocromo coniugato potrebbe alterare le loro proprietà di interazione cellulare o staccarsi da esse, portando a un'interpretazione errata dei risultati. In questo senso, sarebbe preferibile l'imaging diretto delle NP organiche, ma ciò è ostacolato dalla loro composizione elementare, che assomiglia molto a quella dei campioni biologici. Nel presente progetto di dottorato, è stato sviluppato un innovativo nanosistema ibrido basato sulla combinazione di liposomi e nanoparticelle d'oro (AuNPs), con lo scopo di indagare la sua interazione cellulare (attribuibile all'involucro lipidico), sfruttando le forti proprietà ottiche delle AuNPs. Il progetto fa parte del progetto europeo SMART-Electron che mira alla modifica e all'ottimizzazione della già innovativa tecnica di TEM dinamico. L'introduzione di un modulatore di elettroni liberi a base ottica (PELM), per ingegnerizzare con precisione il fascio di elettroni, sarà abbinata a una configurazione pump-probe, in cui saranno impiegati impulsi ottici precisamente temporizzati per un'indagine dinamica dei campioni, in seguito ad una stimolazione ottica esterna. Ciò consentirà un'indagine dinamica dell'interazione tra nanomateriali e campioni biologici, con una risoluzione spazio-temporale senza precedenti. I liposomi e le NPs ibride, denominati rispettivamente Lipo e Lipo-Gold, sono stati sintetizzati con una modificazione dell’approccio di idratazione del film lipidico e ottimizzati e caratterizzati con tecniche standard. Poi, la loro compatibilità biologica e le proprietà di interazione cellulare sono state valutate mediante marcatura fluorescente e non sono state osservate differenze tra Lipo e Lipo-Gold. Questi risultati hanno dimostrato la possibilità di utilizzare Lipo-Gold come modello per studiare le interazioni tra liposomi e cellule, sfruttando le caratteristiche ottiche e plasmoniche delle AuNPs. L'internalizzazione cellulare di Lipo-Gold non marcate è stata studiata mediante microscopia iperspettrale in campo scuro e TEM, dimostrando che le NPs sono in grado di entrare nelle cellule attraverso meccanismi di endocitosi, seguendo la via endo-lisosomiale. Infine, durante un periodo all'estero nel laboratorio del Prof. Paul Verkade (Università di Bristol, Regno Unito), sono stati eseguiti esperimenti di microscopia correlativa ottica-elettronica (CLEM). Il segnale di fluorescenza proveniente dalla componente lipidica del Lipo-Gold e il segnale elettrondenso proveniente dalle AuNPs sono risultati colocalizzati in compartimenti di membrana intracellulare. Parallelamente a questi esperimenti, nel nostro laboratorio presso il Dipartimento di Scienza dei Materiali dell'UniMiB è stata allestita una piattaforma TEM dinamica e abbiamo potuto dimostrare l'emissione di un fascio di elettroni pulsati a guida ottica, il successo dell'interazione luce-elettrone nello stadio PELM e la possibilità di guidare un terzo laser ottico sul campione.

(2025). Direct visualization of unlabeled lipid nanoparticles for intracellular pathway analysis via optical and electron microscopies. (Tesi di dottorato, , 2025).

Direct visualization of unlabeled lipid nanoparticles for intracellular pathway analysis via optical and electron microscopies

TESTA, FILIPPO
2025

Abstract

The application of nanotechnology in the medical field, named nanomedicine, has gained great attention in the last years, in particular concerning the use of nanoparticles (NPs) for the delivery of drugs. Among different kind of NPs, especially organic, lipid-based ones have obtained success and, in some cases, approval for clinical applications. However, the clinical translation of nano-drug delivery tools is still extremely limited, and their efficacy is severely hindered by biological barriers. Among those, cellular internalization and endosomal escape processes, both fundamental for clinical efficacy, are considered a bottleneck step. Much is still unclear about these processes, mainly due to limitations in the assays and techniques commonly employed for their investigation. Indeed, these techniques usually are based on a not reliable indirect visualization (i.e. activity/sensor-based assays) or on the fluorescent labelling of the NPs, where conjugated fluorochrome could alter their cellular interaction properties or detach from them, leading to misinterpretation of results. In this sense, direct imaging of organic NPs would be preferred, but that is challenged by their own elemental composition which closely resemble that of biological samples. In the present PhD project, an innovative hybrid nanosystem based on combination of liposomes and gold nanoparticles (AuNPs) was developed, with the purpose of investigating its interaction with cell (attributable to the lipidic shell), by taking advantage of the strong AuNPs optical properties. The project is part of the larger, EU-funded, SMART-Electron project, which aims at modification and optimization of already innovative dynamic TEM technique. The introduction of Photonic-based free ELectron Modulator (PELM) to accurately engineer the electron beam will be coupled with a pump-probe setup, in which precisely temporized optical pulses will be employed for a dynamic investigation of the samples, following stimulation from an external trigger. This will allow for dynamic investigation of interaction between nanomaterials and biological samples, with unprecedented spatio-temporal resolution. The liposomes and the hybrid NPs, respectively named Lipo and Lipo-Gold, were synthetized by a modified thin lipid film hydration approach and optimized and characterized by standard techniques. Then, their biological compatibility and cellular interaction properties were assessed by fluorescent labelling and no differences between Lipo and Lipo-Gold were observed. These results demonstrated the possibility of using Lipo-Gold, as a model to investigate liposomes-cell interactions, exploiting the optical and plasmonic characteristic of AuNPs. Unlabeled Lipo-Gold’s cellular internalization was investigated by hyperspectral darkfield microscopy and TEM, suggesting that NPs are capable of entering cells through endocytosis mechanisms, following the endo-lysosomal pathway. Finally, during a visiting period in Prof. Paul Verkade’s laboratory (Bristol University, UK), correlative light-electron microscopy (CLEM) experiments were performed. Fluorescence signal coming from lipidic component of Lipo-Gold and the electron dense signal coming from AuNPs were found to colocalize in intracellular membrane compartments. In parallel to these experiments, the dynamic TEM platform was setup in our laboratory in UniMiB Department of Material Science, and we were able to demonstrate the emission of optical-driven pulsed electron beam, successful light-electron interaction at the PELM stage and the possibility of driving a third optical laser onto the sample. Further extension of this PhD work foresees the employment of developed Lipo-Gold for dynamic TEM-based biological experiments.
PROSPERI, DAVIDE
FIANDRA, LUISA
NPs lipidiche; interazione cellular; imaging diretto; microscopia ottica; TEM dinamico
Lipid nanoparticles; cellular interaction; direct visualization; optical microscopy; dynamic TEM
BIO/10 - BIOCHIMICA
English
20-gen-2025
37
2023/2024
none
(2025). Direct visualization of unlabeled lipid nanoparticles for intracellular pathway analysis via optical and electron microscopies. (Tesi di dottorato, , 2025).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/535343
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact