A Weyl law for Toeplitz operators was proved by Boutet de Monvel and Guillemin for general Toeplitz structures. In the setting of positive line bundles, we revisit this theme in light of local asymptotic techniques based on the microlocal theory of the Szego kernel. By pairing this approach with classical arguments used to estimate the spectral function of a pseudodifferential operator, we first establish a local Weyl law (that is, a pointwise estimate on the spectral function of the Toeplitz operator). The global Weyl law follows by integration.
Paoletti, R. (2009). On the weyl law for toeplitz operators. ASYMPTOTIC ANALYSIS, 63(1-2), 85-99 [10.3233/ASY-2008-0929].
On the weyl law for toeplitz operators
PAOLETTI, ROBERTO
2009
Abstract
A Weyl law for Toeplitz operators was proved by Boutet de Monvel and Guillemin for general Toeplitz structures. In the setting of positive line bundles, we revisit this theme in light of local asymptotic techniques based on the microlocal theory of the Szego kernel. By pairing this approach with classical arguments used to estimate the spectral function of a pseudodifferential operator, we first establish a local Weyl law (that is, a pointwise estimate on the spectral function of the Toeplitz operator). The global Weyl law follows by integration.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.