For a finite, positive Borel measure μ on (0, 1) we consider an infinite matrix Γμ, related to the classical Hausdorff matrix defined by the same measure μ, in the same algebraic way that the Hilbert matrix is related to the Cesáro matrix. When μ is the Lebesgue measure, Γμ reduces to the classical Hilbert matrix. We prove that the matrices Γμ are not Hankel, unless μ is a constant multiple of the Lebesgue measure, we give necessary and sufficient conditions for their boundedness on the scale of Hardy spaces Hp, 1 ≤ p < ∞, and we study their compactness and complete continuity properties. In the case 2 ≤ p < ∞, we are able to compute the exact value of the norm of the operator.

Bellavita, C., Chalmoukis, N., Daskalogiannis, V., Stylogiannis, G. (2024). Generalized Hilbert operators arising from Hausdorff matrices. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 152(11), 4759-4773 [10.1090/proc/16917].

Generalized Hilbert operators arising from Hausdorff matrices

Chalmoukis, N.;
2024

Abstract

For a finite, positive Borel measure μ on (0, 1) we consider an infinite matrix Γμ, related to the classical Hausdorff matrix defined by the same measure μ, in the same algebraic way that the Hilbert matrix is related to the Cesáro matrix. When μ is the Lebesgue measure, Γμ reduces to the classical Hilbert matrix. We prove that the matrices Γμ are not Hankel, unless μ is a constant multiple of the Lebesgue measure, we give necessary and sufficient conditions for their boundedness on the scale of Hardy spaces Hp, 1 ≤ p < ∞, and we study their compactness and complete continuity properties. In the case 2 ≤ p < ∞, we are able to compute the exact value of the norm of the operator.
Articolo in rivista - Articolo scientifico
Cesáro; Generalized Hilbert; Hardy spaces; Hausdorff matrices;
English
10-set-2024
2024
152
11
4759
4773
reserved
Bellavita, C., Chalmoukis, N., Daskalogiannis, V., Stylogiannis, G. (2024). Generalized Hilbert operators arising from Hausdorff matrices. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 152(11), 4759-4773 [10.1090/proc/16917].
File in questo prodotto:
File Dimensione Formato  
Bellavita-2024-Proc Amer Math Soc-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 230.2 kB
Formato Adobe PDF
230.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/532982
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact