Given a compact quantizable pseudo-Kähler manifold (M,ω) of constant signature, there exists a Hermitian line bundle (L, h) over M with curvature -2πiω. We shall show that the asymptotic expansion of the Bergman kernels for L⊗k-valued (0, q)-forms implies more or less immediately a number of analogues of well-known results, such as Kodaira embedding theorem and Tian’s almost-isometry theorem.

Galasso, A., Hsiao, C. (2024). Embedding theorems for quantizable pseudo-Kähler manifolds. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA [10.1007/s40574-024-00445-4].

Embedding theorems for quantizable pseudo-Kähler manifolds

Galasso, A.
;
2024

Abstract

Given a compact quantizable pseudo-Kähler manifold (M,ω) of constant signature, there exists a Hermitian line bundle (L, h) over M with curvature -2πiω. We shall show that the asymptotic expansion of the Bergman kernels for L⊗k-valued (0, q)-forms implies more or less immediately a number of analogues of well-known results, such as Kodaira embedding theorem and Tian’s almost-isometry theorem.
Articolo in rivista - Articolo scientifico
32A25; 32Q40; Almost-isometry theorems; Complex manifolds; Embedding theorems
English
10-nov-2024
2024
reserved
Galasso, A., Hsiao, C. (2024). Embedding theorems for quantizable pseudo-Kähler manifolds. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA [10.1007/s40574-024-00445-4].
File in questo prodotto:
File Dimensione Formato  
Galasso-2024-Bollettino dell'Unione Matematica Italiana-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 311.77 kB
Formato Adobe PDF
311.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/532363
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact