We report here on initial results from the Thousand-Pulsar-Array (TPA) programme, part of the Large Survey Project 'MeerTime' on the MeerKAT telescope. The interferometer is used in the tied-array mode in the band from 856 to 1712 MHz, and the wide band coupled with the large collecting area and low receiver temperature make it an excellent telescope for the study of radio pulsars. The TPA is a 5 year project, which aims at to observing (a) more than 1000 pulsars to obtain high-fidelity pulse profiles, (b) some 500 of these pulsars over multiple epochs, and (c) long sequences of single-pulse trains from several hundred pulsars. The scientific outcomes from the programme will include the determination of pulsar geometries, the location of the radio emission within the pulsarmagnetosphere, the connection between the magnetosphere and the crust and core of the star, tighter constraints on the nature of the radio emission itself, as well as interstellar medium studies. First, results presented here include updated dispersion measures, 26 pulsars with Faraday rotation measures derived for the first time, and a description of interesting emission phenomena observed thus far.
Johnston, S., Karastergiou, A., Keith, M., Song, X., Weltevrede, P., Abbate, F., et al. (2020). The Thousand-Pulsar-Array programme on MeerKAT - I. Science objectives and first results. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 493(3), 3608-3615 [10.1093/mnras/staa516].
The Thousand-Pulsar-Array programme on MeerKAT - I. Science objectives and first results
Abbate F.;
2020
Abstract
We report here on initial results from the Thousand-Pulsar-Array (TPA) programme, part of the Large Survey Project 'MeerTime' on the MeerKAT telescope. The interferometer is used in the tied-array mode in the band from 856 to 1712 MHz, and the wide band coupled with the large collecting area and low receiver temperature make it an excellent telescope for the study of radio pulsars. The TPA is a 5 year project, which aims at to observing (a) more than 1000 pulsars to obtain high-fidelity pulse profiles, (b) some 500 of these pulsars over multiple epochs, and (c) long sequences of single-pulse trains from several hundred pulsars. The scientific outcomes from the programme will include the determination of pulsar geometries, the location of the radio emission within the pulsarmagnetosphere, the connection between the magnetosphere and the crust and core of the star, tighter constraints on the nature of the radio emission itself, as well as interstellar medium studies. First, results presented here include updated dispersion measures, 26 pulsars with Faraday rotation measures derived for the first time, and a description of interesting emission phenomena observed thus far.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.