Despite recent advances in drug delivery, the targeted treatment of unhealthy cells or tissues continues to remain a priority. In cancer (much like other pathologies), delivery vectors are designed to exploit physical and biological features of unhealthy tissues that are not always homogenous across the disease. In some cases, shifting the target from unhealthy tissues to the whole organ can represent an advantage. Specifically, the natural organ-specific retention of nanotherapeutics following intravenous administration as seen in the lung, liver, and spleen can be strategically exploited to enhance drug delivery. Herein, we outline the development of a cell-based delivery system using macrophages as a delivery vehicle. When loaded with a chemotherapeutic payload (i.e., doxorubicin), these cellular vectors (CELVEC) were shown to provide continued release within the lung. This study provides proof-of-concept evidence of an alternative class of biomimetic delivery vectors that capitalize on cell size to provide therapeutic advantages for pulmonary treatments.

Evangelopoulos, M., Yazdi, I., Acciardo, S., Palomba, R., Giordano, F., Pasto, A., et al. (2020). Biomimetic cellular vectors for enhancing drug delivery to the lungs. SCIENTIFIC REPORTS, 10(1) [10.1038/s41598-019-55909-x].

Biomimetic cellular vectors for enhancing drug delivery to the lungs

Giordano F.;
2020

Abstract

Despite recent advances in drug delivery, the targeted treatment of unhealthy cells or tissues continues to remain a priority. In cancer (much like other pathologies), delivery vectors are designed to exploit physical and biological features of unhealthy tissues that are not always homogenous across the disease. In some cases, shifting the target from unhealthy tissues to the whole organ can represent an advantage. Specifically, the natural organ-specific retention of nanotherapeutics following intravenous administration as seen in the lung, liver, and spleen can be strategically exploited to enhance drug delivery. Herein, we outline the development of a cell-based delivery system using macrophages as a delivery vehicle. When loaded with a chemotherapeutic payload (i.e., doxorubicin), these cellular vectors (CELVEC) were shown to provide continued release within the lung. This study provides proof-of-concept evidence of an alternative class of biomimetic delivery vectors that capitalize on cell size to provide therapeutic advantages for pulmonary treatments.
Articolo in rivista - Articolo scientifico
Animals; Antibiotics, Antineoplastic; Biomimetics; Doxorubicin; Drug Carriers; Drug Delivery Systems; Drug Liberation; Liposomes; Lung; Macrophages; Male; Mice; Mice, Nude; Tissue Distribution
English
2020
10
1
172
open
Evangelopoulos, M., Yazdi, I., Acciardo, S., Palomba, R., Giordano, F., Pasto, A., et al. (2020). Biomimetic cellular vectors for enhancing drug delivery to the lungs. SCIENTIFIC REPORTS, 10(1) [10.1038/s41598-019-55909-x].
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream-1976958588.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/530513
Citazioni
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 14
Social impact