We observed γ-ray burst (GRB) 221009A using very long baseline interferomety (VLBI) with the European VLBI Network (EVN) and the Very Long Baseline Array (VLBA), over a period spanning from 40 to 262 days after the initial GRB. The high angular resolution (mas) of our observations allowed us, for the second time ever, after GRB 030329, to measure the projected size, s, of the relativistic shock caused by the expansion of the GRB ejecta into the surrounding medium. Our observations support the expansion of the shock with a > 4σ-equivalent significance, and confirm its relativistic nature by revealing an apparently superluminal expansion rate. Fitting a power law expansion model, s α ta, to the observed size evolution, we find a slope a = 0.69α' 0.14+0.13. Fitting the data at each frequency separately, we find different expansion rates, pointing to a frequency-dependent behaviour. We show that the observed size evolution can be reconciled with a reverse shock plus forward shock, provided that the two shocks dominate the emission at different frequencies and, possibly, at different times.

Giarratana, S., Salafia, O., Giroletti, M., Ghirlanda, G., Rhodes, L., Atri, P., et al. (2024). The expansion of the GRB 221009A afterglow. ASTRONOMY & ASTROPHYSICS, 690, 1-16 [10.1051/0004-6361/202348524].

The expansion of the GRB 221009A afterglow

Salafia O. S.;
2024

Abstract

We observed γ-ray burst (GRB) 221009A using very long baseline interferomety (VLBI) with the European VLBI Network (EVN) and the Very Long Baseline Array (VLBA), over a period spanning from 40 to 262 days after the initial GRB. The high angular resolution (mas) of our observations allowed us, for the second time ever, after GRB 030329, to measure the projected size, s, of the relativistic shock caused by the expansion of the GRB ejecta into the surrounding medium. Our observations support the expansion of the shock with a > 4σ-equivalent significance, and confirm its relativistic nature by revealing an apparently superluminal expansion rate. Fitting a power law expansion model, s α ta, to the observed size evolution, we find a slope a = 0.69α' 0.14+0.13. Fitting the data at each frequency separately, we find different expansion rates, pointing to a frequency-dependent behaviour. We show that the observed size evolution can be reconciled with a reverse shock plus forward shock, provided that the two shocks dominate the emission at different frequencies and, possibly, at different times.
Articolo in rivista - Articolo scientifico
Gamma-ray burst: general; Gamma-ray burst: individual: GRB 221009A; Radio continuum: general; Techniques: high angular resolution; Techniques: interferometric;
English
2-ott-2024
2024
690
1
16
A74
none
Giarratana, S., Salafia, O., Giroletti, M., Ghirlanda, G., Rhodes, L., Atri, P., et al. (2024). The expansion of the GRB 221009A afterglow. ASTRONOMY & ASTROPHYSICS, 690, 1-16 [10.1051/0004-6361/202348524].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/526172
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact