Sodium iodide (NaI)-based cryogenic scintillating calorimeters using quantum sensors for signal readout have shown promising first results toward a model-independent test of the annually modulating signal detected by the DAMA/LIBRA dark matter experiment. The COSINUS Collaboration has previously reported on the first above-ground measurements using a dual-channel readout of phonons and light based on transition edge sensors (TESs) that allows for particle discrimination on an event-by-event basis. In this article, we outline the first underground measurement of a NaI cryogenic calorimeter readout via the novel remoTES scheme. A 3.67 g NaI absorber with an improved silicon light detector design was operated at the Laboratori Nazionali del Gran Sasso, Italy. A significant improvement in the discrimination power of e-/γ events to nuclear recoils was observed with a fivefold improvement in the nuclear recoil baseline resolution, achieving σ=441 eV. Furthermore, we present a limit on the spin-independent dark matter nucleon elastic scattering cross section, achieving a sensitivity of O(pb) with an exposure of only 11.6 g d.

Angloher, G., Bharadwaj, M., Dafinei, I., Di Marco, N., Einfalt, L., Ferroni, F., et al. (2024). Deep-underground dark matter search with a COSINUS detector prototype. PHYSICAL REVIEW D, 110(4) [10.1103/PhysRevD.110.043010].

Deep-underground dark matter search with a COSINUS detector prototype

Pagnanini L.;Puiu A.;
2024

Abstract

Sodium iodide (NaI)-based cryogenic scintillating calorimeters using quantum sensors for signal readout have shown promising first results toward a model-independent test of the annually modulating signal detected by the DAMA/LIBRA dark matter experiment. The COSINUS Collaboration has previously reported on the first above-ground measurements using a dual-channel readout of phonons and light based on transition edge sensors (TESs) that allows for particle discrimination on an event-by-event basis. In this article, we outline the first underground measurement of a NaI cryogenic calorimeter readout via the novel remoTES scheme. A 3.67 g NaI absorber with an improved silicon light detector design was operated at the Laboratori Nazionali del Gran Sasso, Italy. A significant improvement in the discrimination power of e-/γ events to nuclear recoils was observed with a fivefold improvement in the nuclear recoil baseline resolution, achieving σ=441 eV. Furthermore, we present a limit on the spin-independent dark matter nucleon elastic scattering cross section, achieving a sensitivity of O(pb) with an exposure of only 11.6 g d.
Articolo in rivista - Articolo scientifico
Dark Matter; Demand Assignment Multiple Access; Germanium
English
5-ago-2024
2024
110
4
043010
none
Angloher, G., Bharadwaj, M., Dafinei, I., Di Marco, N., Einfalt, L., Ferroni, F., et al. (2024). Deep-underground dark matter search with a COSINUS detector prototype. PHYSICAL REVIEW D, 110(4) [10.1103/PhysRevD.110.043010].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/526161
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
Social impact