The accuracy of EEG source analysis reconstruction improves when a realistic head volume conductor is modeled. In this study we investigated how the progressively more complex head representations influence the spatial localization of auditory-evoked potentials (AEPs). Fourteen young-adult participants with normal hearing performed the AEP task. Individualized head models were obtained from structural MRI and diffusion-weighted imaging scans collected in a separate session. AEPs were elicited by 1 k Hz and 4 k Hz tone bursts during a passive-listening tetanizing paradigm. We compared the amplitude of the N1 and P2 components before and after 4 min of tetanic-stimulation with 1 k Hz sounds. Current density reconstruction values of both components were investigated in the primary auditory cortex and adjacent areas. Furthermore, we compared the signal topography and magnitude obtained with 10 different head models on the EEG forward solution. Starting from the simplest model (scalp, skull, brain), we investigated the influence of modeling the CSF, distinguishing between GM and WM conductors, and including anisotropic WM values. We localized the activity of AEPs within the primary auditory cortex, but not in adjacent areas. The inclusion of the CSF compartment had the strongest influence on the source reconstruction, whereas white matter anisotropy led to a smaller improvement. We conclude that individualized realistic head models provide the best solution for the forward solution when modeling the CSF conductor.

Conte, S., Richards, J. (2021). The Influence of the Head Model Conductor on the Source Localization of Auditory Evoked Potentials. BRAIN TOPOGRAPHY, 34(6), 793-812 [10.1007/s10548-021-00871-z].

The Influence of the Head Model Conductor on the Source Localization of Auditory Evoked Potentials

Conte S.;
2021

Abstract

The accuracy of EEG source analysis reconstruction improves when a realistic head volume conductor is modeled. In this study we investigated how the progressively more complex head representations influence the spatial localization of auditory-evoked potentials (AEPs). Fourteen young-adult participants with normal hearing performed the AEP task. Individualized head models were obtained from structural MRI and diffusion-weighted imaging scans collected in a separate session. AEPs were elicited by 1 k Hz and 4 k Hz tone bursts during a passive-listening tetanizing paradigm. We compared the amplitude of the N1 and P2 components before and after 4 min of tetanic-stimulation with 1 k Hz sounds. Current density reconstruction values of both components were investigated in the primary auditory cortex and adjacent areas. Furthermore, we compared the signal topography and magnitude obtained with 10 different head models on the EEG forward solution. Starting from the simplest model (scalp, skull, brain), we investigated the influence of modeling the CSF, distinguishing between GM and WM conductors, and including anisotropic WM values. We localized the activity of AEPs within the primary auditory cortex, but not in adjacent areas. The inclusion of the CSF compartment had the strongest influence on the source reconstruction, whereas white matter anisotropy led to a smaller improvement. We conclude that individualized realistic head models provide the best solution for the forward solution when modeling the CSF conductor.
Articolo in rivista - Articolo scientifico
Auditory evoked potentials; CSF; Head models; Source reconstruction; WM anisotropy;
English
2021
34
6
793
812
none
Conte, S., Richards, J. (2021). The Influence of the Head Model Conductor on the Source Localization of Auditory Evoked Potentials. BRAIN TOPOGRAPHY, 34(6), 793-812 [10.1007/s10548-021-00871-z].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/525040
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
Social impact