Brusa, L., Pennoni, F., Bartolucci, F., Peruilh Bagolini, R. (2024). Addressing latent state separation in hidden Markov models for categorical data with covariates: A penalised maximum likelihood approach. In CHALLENGES IN CATEGORICAL DATA ANALYSIS LSE 2024 BOOK OF ABSTRACTS.

Addressing latent state separation in hidden Markov models for categorical data with covariates: A penalised maximum likelihood approach

Brusa, L;Pennoni, F;
2024

abstract + slide
Binary longitudinal data, Discrete latent variables, Early-warning system, Expectation-Maximization algorithm, Hypotension data, Penalized likelihood
English
Challenges for Categorical Data Analysis (CCDA 2024) - October 31 to November 1st, 2024
2024
CHALLENGES IN CATEGORICAL DATA ANALYSIS LSE 2024 BOOK OF ABSTRACTS
2024
https://sites.google.com/view/ccda2024/talks-slides
open
Brusa, L., Pennoni, F., Bartolucci, F., Peruilh Bagolini, R. (2024). Addressing latent state separation in hidden Markov models for categorical data with covariates: A penalised maximum likelihood approach. In CHALLENGES IN CATEGORICAL DATA ANALYSIS LSE 2024 BOOK OF ABSTRACTS.
File in questo prodotto:
File Dimensione Formato  
Brusa-2024-CCDA.pdf

accesso aperto

Descrizione: Presentazione
Tipologia di allegato: Other attachments
Licenza: Creative Commons
Dimensione 507.31 kB
Formato Adobe PDF
507.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/523120
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact