We show that the equivalence classes of deformations of localizable semisimple Poisson pencils of hydrodynamic type with respect to the action of the Miura-reciprocal group contain a local representative and are in one-to-one correspondence with the equivalence classes of deformations of local semisimple Poisson pencils of hydrodynamic type with respect to the action of the Miura group.
Lorenzoni, P., Shadrin, S., Vitolo, R. (2024). Miura-reciprocal transformations and localizable Poisson pencils. NONLINEARITY, 37(2) [10.1088/1361-6544/ad1494].
Miura-reciprocal transformations and localizable Poisson pencils
Lorenzoni P.;
2024
Abstract
We show that the equivalence classes of deformations of localizable semisimple Poisson pencils of hydrodynamic type with respect to the action of the Miura-reciprocal group contain a local representative and are in one-to-one correspondence with the equivalence classes of deformations of local semisimple Poisson pencils of hydrodynamic type with respect to the action of the Miura group.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Lorenzoni-2024-Nonlinearity-VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
501.42 kB
Formato
Adobe PDF
|
501.42 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.