We show that the equivalence classes of deformations of localizable semisimple Poisson pencils of hydrodynamic type with respect to the action of the Miura-reciprocal group contain a local representative and are in one-to-one correspondence with the equivalence classes of deformations of local semisimple Poisson pencils of hydrodynamic type with respect to the action of the Miura group.

Lorenzoni, P., Shadrin, S., Vitolo, R. (2024). Miura-reciprocal transformations and localizable Poisson pencils. NONLINEARITY, 37(2) [10.1088/1361-6544/ad1494].

Miura-reciprocal transformations and localizable Poisson pencils

Lorenzoni P.;
2024

Abstract

We show that the equivalence classes of deformations of localizable semisimple Poisson pencils of hydrodynamic type with respect to the action of the Miura-reciprocal group contain a local representative and are in one-to-one correspondence with the equivalence classes of deformations of local semisimple Poisson pencils of hydrodynamic type with respect to the action of the Miura group.
Articolo in rivista - Articolo scientifico
37K05; 37K10; 37K20; 37K25; bi-Hamiltonian PDE; Hamiltonian operator; integrable systems; Miura transformation; reciprocal transformation;
English
22-dic-2023
2024
37
2
025001
none
Lorenzoni, P., Shadrin, S., Vitolo, R. (2024). Miura-reciprocal transformations and localizable Poisson pencils. NONLINEARITY, 37(2) [10.1088/1361-6544/ad1494].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/522502
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
Social impact