The SciQA benchmark for scientific question answering aims to represent a challenging task for next-generation question-answering systems on which vanilla large language models fail. In this article, we provide an analysis of the performance of language models on this benchmark including prompting and fine-tuning techniques to adapt them to the SciQA task. We show that both fine-tuning and prompting techniques with intelligent few-shot selection allow us to obtain excellent results on the SciQA benchmark. We discuss the valuable lessons and common error categories, and outline their implications on how to optimise large language models for question answering over knowledge graphs.
Lehmann, J., Meloni, A., Motta, E., Osborne, F., Recupero, D., Salatino, A., et al. (2024). Large Language Models for Scientific Question Answering: An Extensive Analysis of the SciQA Benchmark. In The Semantic Web 21st International Conference, ESWC 2024, Hersonissos, Crete, Greece, May 26–30, 2024, Proceedings, Part I (pp.199-217). Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-60626-7_11].
Large Language Models for Scientific Question Answering: An Extensive Analysis of the SciQA Benchmark
Osborne F.;
2024
Abstract
The SciQA benchmark for scientific question answering aims to represent a challenging task for next-generation question-answering systems on which vanilla large language models fail. In this article, we provide an analysis of the performance of language models on this benchmark including prompting and fine-tuning techniques to adapt them to the SciQA task. We show that both fine-tuning and prompting techniques with intelligent few-shot selection allow us to obtain excellent results on the SciQA benchmark. We discuss the valuable lessons and common error categories, and outline their implications on how to optimise large language models for question answering over knowledge graphs.File | Dimensione | Formato | |
---|---|---|---|
Lehmann-2024-ESWC-Preprint.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Altro
Dimensione
310.36 kB
Formato
Adobe PDF
|
310.36 kB | Adobe PDF | Visualizza/Apri |
Lehmann-2024-ESWC-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
211.71 kB
Formato
Adobe PDF
|
211.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.