The SciQA benchmark for scientific question answering aims to represent a challenging task for next-generation question-answering systems on which vanilla large language models fail. In this article, we provide an analysis of the performance of language models on this benchmark including prompting and fine-tuning techniques to adapt them to the SciQA task. We show that both fine-tuning and prompting techniques with intelligent few-shot selection allow us to obtain excellent results on the SciQA benchmark. We discuss the valuable lessons and common error categories, and outline their implications on how to optimise large language models for question answering over knowledge graphs.

Lehmann, J., Meloni, A., Motta, E., Osborne, F., Recupero, D., Salatino, A., et al. (2024). Large Language Models for Scientific Question Answering: An Extensive Analysis of the SciQA Benchmark. In The Semantic Web 21st International Conference, ESWC 2024, Hersonissos, Crete, Greece, May 26–30, 2024, Proceedings, Part I (pp.199-217). Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-60626-7_11].

Large Language Models for Scientific Question Answering: An Extensive Analysis of the SciQA Benchmark

Osborne F.;
2024

Abstract

The SciQA benchmark for scientific question answering aims to represent a challenging task for next-generation question-answering systems on which vanilla large language models fail. In this article, we provide an analysis of the performance of language models on this benchmark including prompting and fine-tuning techniques to adapt them to the SciQA task. We show that both fine-tuning and prompting techniques with intelligent few-shot selection allow us to obtain excellent results on the SciQA benchmark. We discuss the valuable lessons and common error categories, and outline their implications on how to optimise large language models for question answering over knowledge graphs.
paper
Few-shot learning; Fine-tuning; Knowledge graphs; Language models.; Question answering;
English
21st European Semantic Web Conference, ESWC 2024 - 26 May 2024 through 30 May 2024
2024
Meroño Peñuela, A; Dimou, A; Troncy, R; Hartig, O; Acosta, M; Alam, M; Paulheim, H; Lisena, P
The Semantic Web 21st International Conference, ESWC 2024, Hersonissos, Crete, Greece, May 26–30, 2024, Proceedings, Part I
9783031606250
20-mag-2024
2024
14664 LNCS
199
217
partially_open
Lehmann, J., Meloni, A., Motta, E., Osborne, F., Recupero, D., Salatino, A., et al. (2024). Large Language Models for Scientific Question Answering: An Extensive Analysis of the SciQA Benchmark. In The Semantic Web 21st International Conference, ESWC 2024, Hersonissos, Crete, Greece, May 26–30, 2024, Proceedings, Part I (pp.199-217). Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-60626-7_11].
File in questo prodotto:
File Dimensione Formato  
Lehmann-2024-ESWC-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 310.36 kB
Formato Adobe PDF
310.36 kB Adobe PDF Visualizza/Apri
Lehmann-2024-ESWC-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 211.71 kB
Formato Adobe PDF
211.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/521179
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
Social impact