Deficiencies in response inhibition are associated with numerous mental health conditions, warranting innovative treatments. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, modulates cortical excitability and has shown promise in improving response inhibition. However, tDCS effects on response inhibition often yield contradictory findings. Previous research emphasized the importance of inter-individual factors that are mostly ignored in conventional meta-analyses of mean effects. We aimed to fill this gap and promote the complementary use of the coefficient of variation ratio and standardized mean effects. The systematic literature search included single-session and sham-controlled tDCS studies utilizing stop-signal task or Go-NoGo tasks, analyzing 88 effect sizes from 53 studies. Considering the impact of inter-individual factors, we hypothesized that variances increase in the active versus sham tDCS. However, the results showed that variances between both groups did not differ. Additionally, analyzing standardized mean effects supported previous research showing an improvement in the stop-signal task but not in the Go-NoGo task following active tDCS. These findings suggest that inter-individual differences do not increase variances in response inhibition, implying that the heterogeneity cannot be attributed to higher variance in response inhibition during and after active tDCS. Furthermore, methodological considerations are crucial for tDCS efficacy.
Lasogga, L., Gramegna, C., Müller, D., Habel, U., Mehler, D., Gur, R., et al. (2024). Meta-analysis of variance in tDCS effects on response inhibition. SCIENTIFIC REPORTS, 14(1) [10.1038/s41598-024-70065-7].
Meta-analysis of variance in tDCS effects on response inhibition
Gramegna C.;
2024
Abstract
Deficiencies in response inhibition are associated with numerous mental health conditions, warranting innovative treatments. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, modulates cortical excitability and has shown promise in improving response inhibition. However, tDCS effects on response inhibition often yield contradictory findings. Previous research emphasized the importance of inter-individual factors that are mostly ignored in conventional meta-analyses of mean effects. We aimed to fill this gap and promote the complementary use of the coefficient of variation ratio and standardized mean effects. The systematic literature search included single-session and sham-controlled tDCS studies utilizing stop-signal task or Go-NoGo tasks, analyzing 88 effect sizes from 53 studies. Considering the impact of inter-individual factors, we hypothesized that variances increase in the active versus sham tDCS. However, the results showed that variances between both groups did not differ. Additionally, analyzing standardized mean effects supported previous research showing an improvement in the stop-signal task but not in the Go-NoGo task following active tDCS. These findings suggest that inter-individual differences do not increase variances in response inhibition, implying that the heterogeneity cannot be attributed to higher variance in response inhibition during and after active tDCS. Furthermore, methodological considerations are crucial for tDCS efficacy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.