For the first time, the zeta (ξ) potential of pathogenic mineral fibres (chrysotiles, amphiboles and erionite) was systematically investigated to shed light on the relationship between surface reactivity and fibre pathogenicity. A general model explaining the zeta potential of chrysotile, amphiboles and erionite has been postulated. In double distilled water, chrysotiles showed positive values while crocidolite and erionite showed negative values. In contact with organic solutions, all fibres exhibited negative values of zeta potential. The decrease of the surface potential is deemed to be a defensive chemical response of the macrophage cells to minimize hemolytic damage. Negatively charged surfaces favour the binding of collagen and redox activated Fe-rich proteins, to form the so-called asbestos bodies and prompt the formation of HO via the reaction with peroxide (H2O2+e-→HO+HO-). An additional mechanism accounting for higher carcinogenicity is possibly related to the Ca2+ sequestration by the fibres with surface negative potential, impairing the mitochondrial apoptotic pathway. It was also found that with a negative zeta potential, the attractive forces prevailed over repulsions and favoured processes such as agglomeration responsible of a tumorigenic chronic inflammation.

Pollastri, S., Gualtieri, A., Lassinantti Gualtieri, M., Hanuskova, M., Cavallo, A., Gaudino, G. (2014). The zeta potential of mineral fibres. JOURNAL OF HAZARDOUS MATERIALS, 276, 469-479 [10.1016/j.jhazmat.2014.05.060].

The zeta potential of mineral fibres

CAVALLO, ALESSANDRO;
2014

Abstract

For the first time, the zeta (ξ) potential of pathogenic mineral fibres (chrysotiles, amphiboles and erionite) was systematically investigated to shed light on the relationship between surface reactivity and fibre pathogenicity. A general model explaining the zeta potential of chrysotile, amphiboles and erionite has been postulated. In double distilled water, chrysotiles showed positive values while crocidolite and erionite showed negative values. In contact with organic solutions, all fibres exhibited negative values of zeta potential. The decrease of the surface potential is deemed to be a defensive chemical response of the macrophage cells to minimize hemolytic damage. Negatively charged surfaces favour the binding of collagen and redox activated Fe-rich proteins, to form the so-called asbestos bodies and prompt the formation of HO via the reaction with peroxide (H2O2+e-→HO+HO-). An additional mechanism accounting for higher carcinogenicity is possibly related to the Ca2+ sequestration by the fibres with surface negative potential, impairing the mitochondrial apoptotic pathway. It was also found that with a negative zeta potential, the attractive forces prevailed over repulsions and favoured processes such as agglomeration responsible of a tumorigenic chronic inflammation.
Articolo in rivista - Articolo scientifico
Asbestos; BET; Mineral fibres; Pathogenicity; Zeta potential
English
2014
276
469
479
none
Pollastri, S., Gualtieri, A., Lassinantti Gualtieri, M., Hanuskova, M., Cavallo, A., Gaudino, G. (2014). The zeta potential of mineral fibres. JOURNAL OF HAZARDOUS MATERIALS, 276, 469-479 [10.1016/j.jhazmat.2014.05.060].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/52039
Citazioni
  • Scopus 79
  • ???jsp.display-item.citation.isi??? 75
Social impact