Objective: Temporal lobe epilepsy (TLE) is the most common form of refractory focal epilepsy, and the current clinical diagnosis is based on EEG, clinical neurological history and neuroimaging findings. Methods: So far, there are no blood-based molecular biomarkers of TLE to support clinical diagnosis, despite the pathogenic mechanisms underlying TLE involving defects in the regulation of gene expression. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression. Results: Recent studies show the feasibility of detecting miRNAs in body fluids; circulating miRNAs have emerged as potential clinical biomarkers in epilepsy, although the TLE miRNA profile needs to be addressed. Here, we analysed the diagnostic potential of 8 circulating miRNAs in sera of 52 TLE patients and 40 age- and sex-matched donor controls by RT-qPCR analyses. Conclusion: We found that miR-34a-5p, -106b-5p, -130a-3p, -146a-5p, and -19a-3p are differently expressed in TLE compared to control subjects, suggesting a diagnostic role. Furthermore, we found that miR-34a-5p, -106b-5p, -146a-5p and miR-451a could become prognostic biomarkers, being differentially expressed between drug-resistant and drug-responsive TLE subjects. Therefore, serum miRNAs are diagnostic and drug-resistance predictive molecules of TLE.
Bertoli, G., Fortunato, F., Cava, C., Manna, I., Gallivanone, F., Labate, A., et al. (2024). Serum MicroRNAs as Predictors of Diagnosis and Drug-resistance in Temporal Lobe Epilepsy: A Preliminary Study. CURRENT NEUROPHARMACOLOGY, 22(14), 2422-2432 [10.2174/1570159X22666240516145823].
Serum MicroRNAs as Predictors of Diagnosis and Drug-resistance in Temporal Lobe Epilepsy: A Preliminary Study
Cava C.;Panio A.;Porro D.;
2024
Abstract
Objective: Temporal lobe epilepsy (TLE) is the most common form of refractory focal epilepsy, and the current clinical diagnosis is based on EEG, clinical neurological history and neuroimaging findings. Methods: So far, there are no blood-based molecular biomarkers of TLE to support clinical diagnosis, despite the pathogenic mechanisms underlying TLE involving defects in the regulation of gene expression. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression. Results: Recent studies show the feasibility of detecting miRNAs in body fluids; circulating miRNAs have emerged as potential clinical biomarkers in epilepsy, although the TLE miRNA profile needs to be addressed. Here, we analysed the diagnostic potential of 8 circulating miRNAs in sera of 52 TLE patients and 40 age- and sex-matched donor controls by RT-qPCR analyses. Conclusion: We found that miR-34a-5p, -106b-5p, -130a-3p, -146a-5p, and -19a-3p are differently expressed in TLE compared to control subjects, suggesting a diagnostic role. Furthermore, we found that miR-34a-5p, -106b-5p, -146a-5p and miR-451a could become prognostic biomarkers, being differentially expressed between drug-resistant and drug-responsive TLE subjects. Therefore, serum miRNAs are diagnostic and drug-resistance predictive molecules of TLE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.