Chelators are widely used in conservation treatments to remove metal stains from marble, travertine, and limestone surfaces. In the current review the chemical aspects underlying the use of chelators for the removal of copper and iron stains from built heritage are described and clear criteria for the selection of the most efficient stain removal treatment are given. The main chelator structural features are outlined and the operating conditions for effective metal stain removal (pH, time of application, etc.) discussed, with a particular emphasis on the ability to form stable metal complexes, the high selectivity towards the metal that should be removed, and the high sustainability for the environment. Dense matrices often host chelators for higher effectiveness, and further research is required to clarify their role in the cleaning process. Then, relevant case studies of copper and iron stain removal are discussed. On these bases, the most effective chelators for copper and stain removal are indicated, providing chemists and conservation scientists with scientific support for conservation operations on stone works of art and opening the way to the synthesis of new chelators.This Review rationalizes the use of chelators for the cleaning of built heritage from copper and iron stains. The focus is on relevant case studies involving such chemical treatments. Further topics include conditions for effective stain removal. Finally, the Review discusses the most effective cleaning conditions, providing a scientific support for conservation operations on stone works of art. image

Canevali, C., Sansonetti, A., Rampazzi, L., Monticelli, D., D'Arienzo, M., Di Credico, B., et al. (2024). The Chemistry of Chelation for Built Heritage Cleaning: The Removal of Copper and Iron Stains. CHEMPLUSCHEM, 89(9 (September 2024)) [10.1002/cplu.202300709].

The Chemistry of Chelation for Built Heritage Cleaning: The Removal of Copper and Iron Stains

Canevali C.
Primo
;
D'Arienzo M.;Di Credico B.;Mostoni S.;Nistico' R.;Scotti R.
2024

Abstract

Chelators are widely used in conservation treatments to remove metal stains from marble, travertine, and limestone surfaces. In the current review the chemical aspects underlying the use of chelators for the removal of copper and iron stains from built heritage are described and clear criteria for the selection of the most efficient stain removal treatment are given. The main chelator structural features are outlined and the operating conditions for effective metal stain removal (pH, time of application, etc.) discussed, with a particular emphasis on the ability to form stable metal complexes, the high selectivity towards the metal that should be removed, and the high sustainability for the environment. Dense matrices often host chelators for higher effectiveness, and further research is required to clarify their role in the cleaning process. Then, relevant case studies of copper and iron stain removal are discussed. On these bases, the most effective chelators for copper and stain removal are indicated, providing chemists and conservation scientists with scientific support for conservation operations on stone works of art and opening the way to the synthesis of new chelators.This Review rationalizes the use of chelators for the cleaning of built heritage from copper and iron stains. The focus is on relevant case studies involving such chemical treatments. Further topics include conditions for effective stain removal. Finally, the Review discusses the most effective cleaning conditions, providing a scientific support for conservation operations on stone works of art. image
Articolo in rivista - Review Essay
built heritage; chelators; complex formation; copper; iron;
English
29-apr-2024
2024
89
9 (September 2024)
e202300709
reserved
Canevali, C., Sansonetti, A., Rampazzi, L., Monticelli, D., D'Arienzo, M., Di Credico, B., et al. (2024). The Chemistry of Chelation for Built Heritage Cleaning: The Removal of Copper and Iron Stains. CHEMPLUSCHEM, 89(9 (September 2024)) [10.1002/cplu.202300709].
File in questo prodotto:
File Dimensione Formato  
Canevali-2024-ChemSusChem-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 6.04 MB
Formato Adobe PDF
6.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/519019
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact