Background: Pre-transplant procurement biopsy interpretation is challenging, also because of the low number of renal pathology experts. Artificial intelligence (AI) can assist by aiding pathologists with kidney donor biopsy assessment. Herein we present the "Galileo" AI tool, designed specifically to assist the on-call pathologist with interpreting pre-implantation kidney biopsies. Methods: A multicenter cohort of whole slide images acquired from core-needle and wedge biopsies of the kidney was collected. A deep learning algorithm was trained to detect the main findings evaluated in the pre-implantation setting (normal glomeruli, globally sclerosed glomeruli, ischemic glomeruli, arterioles and arteries). The model obtained on the Aiforia Create platform was validated on an external dataset by three independent pathologists to evaluate the performance of the algorithm. Results: Galileo demonstrated a precision, sensitivity, F1 score and total area error of 81.96%, 94.39%, 87.74%, 2.81% and 74.05%, 71.03%, 72.5%, 2% in the training and validation sets, respectively. Galileo was significantly faster than pathologists, requiring 2 min overall in the validation phase (vs 25, 22 and 31 min by 3 separate human readers, p < 0.001). Galileo-assisted detection of renal structures and quantitative information was directly integrated in the final report. Conclusions: The Galileo AI-assisted tool shows promise in speeding up pre-implantation kidney biopsy interpretation, as well as in reducing inter-observer variability. This tool may represent a starting point for further improvements based on hard endpoints such as graft survival.

Eccher, A., L'Imperio, V., Pantanowitz, L., Cazzaniga, G., Del Carro, F., Marletta, S., et al. (2024). Galileo-an Artificial Intelligence tool for evaluating pre-implantation kidney biopsies. JN. JOURNAL OF NEPHROLOGY [10.1007/s40620-024-02094-4].

Galileo-an Artificial Intelligence tool for evaluating pre-implantation kidney biopsies

L'Imperio, Vincenzo
Co-primo
;
Cazzaniga, Giorgio;Del Carro, Fabio;Pagni, Fabio;
2024

Abstract

Background: Pre-transplant procurement biopsy interpretation is challenging, also because of the low number of renal pathology experts. Artificial intelligence (AI) can assist by aiding pathologists with kidney donor biopsy assessment. Herein we present the "Galileo" AI tool, designed specifically to assist the on-call pathologist with interpreting pre-implantation kidney biopsies. Methods: A multicenter cohort of whole slide images acquired from core-needle and wedge biopsies of the kidney was collected. A deep learning algorithm was trained to detect the main findings evaluated in the pre-implantation setting (normal glomeruli, globally sclerosed glomeruli, ischemic glomeruli, arterioles and arteries). The model obtained on the Aiforia Create platform was validated on an external dataset by three independent pathologists to evaluate the performance of the algorithm. Results: Galileo demonstrated a precision, sensitivity, F1 score and total area error of 81.96%, 94.39%, 87.74%, 2.81% and 74.05%, 71.03%, 72.5%, 2% in the training and validation sets, respectively. Galileo was significantly faster than pathologists, requiring 2 min overall in the validation phase (vs 25, 22 and 31 min by 3 separate human readers, p < 0.001). Galileo-assisted detection of renal structures and quantitative information was directly integrated in the final report. Conclusions: The Galileo AI-assisted tool shows promise in speeding up pre-implantation kidney biopsy interpretation, as well as in reducing inter-observer variability. This tool may represent a starting point for further improvements based on hard endpoints such as graft survival.
Articolo in rivista - Articolo scientifico
Artificial intelligence; Digital pathology; Pre-implantation biopsy; Renal biopsies; Transplant
English
2-ott-2024
2024
none
Eccher, A., L'Imperio, V., Pantanowitz, L., Cazzaniga, G., Del Carro, F., Marletta, S., et al. (2024). Galileo-an Artificial Intelligence tool for evaluating pre-implantation kidney biopsies. JN. JOURNAL OF NEPHROLOGY [10.1007/s40620-024-02094-4].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/516946
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact