The electrochemical lithium-mediated N2 reduction is a promising process for sustainable ammonia synthesis. Unfortunately, fundamental understanding linking the interfacial chemistry of lithium plating with ammonia efficiency is not well understood. We investigated a series of tetrahydrofuran electrolytes (LiClO4, LiBF4, LiTFSI, LiFSI) at 0.2-7.0 M. The Li+/Li potential (ELi+/Li) measured against the electrolyte-invariant Me10Fc reference increased with more dissociative salts and higher concentration. The upshift in ELi+/Li was found to correlate with greater ammonia production stability and faradaic efficiency as well as the production rate. This correlation could be attributed to altered solid-electrolyte interphase (SEI), which revealed prominent anion-derived (LiF) and alkoxide (LiOEt) species with increasing ELi+/Li from Raman spectroscopy, potentially providing more LixN and enhanced ion transport. Such insights can be used to guide the design of electrolytes to promote lithium-mediated ammonia synthesis for practical applications.
Iriawan, H., Herzog, A., Yu, S., Ceribelli, N., Shao-Horn, Y. (2024). Upshifting Lithium Plating Potential To Enhance Electrochemical Lithium Mediated Ammonia Synthesis. ACS ENERGY LETTERS, 9(10), 4883-4891 [10.1021/acsenergylett.4c02149].
Upshifting Lithium Plating Potential To Enhance Electrochemical Lithium Mediated Ammonia Synthesis
Ceribelli, Nicole;
2024
Abstract
The electrochemical lithium-mediated N2 reduction is a promising process for sustainable ammonia synthesis. Unfortunately, fundamental understanding linking the interfacial chemistry of lithium plating with ammonia efficiency is not well understood. We investigated a series of tetrahydrofuran electrolytes (LiClO4, LiBF4, LiTFSI, LiFSI) at 0.2-7.0 M. The Li+/Li potential (ELi+/Li) measured against the electrolyte-invariant Me10Fc reference increased with more dissociative salts and higher concentration. The upshift in ELi+/Li was found to correlate with greater ammonia production stability and faradaic efficiency as well as the production rate. This correlation could be attributed to altered solid-electrolyte interphase (SEI), which revealed prominent anion-derived (LiF) and alkoxide (LiOEt) species with increasing ELi+/Li from Raman spectroscopy, potentially providing more LixN and enhanced ion transport. Such insights can be used to guide the design of electrolytes to promote lithium-mediated ammonia synthesis for practical applications.File | Dimensione | Formato | |
---|---|---|---|
iriawan-2024-ACS Energy Lett-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
3.74 MB
Formato
Adobe PDF
|
3.74 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.