Our modern societies face various threats to public and environmental health, among which bacterial biofilms and the emergence of antibiotic resistance call for the discovery of new bioactive compounds. Fortunately, Actinomycetes have already been identified as rich sources of chemically diverse and unique bioactive metabolites. In this work, we first review the antibiofilm potential of Actinomycetes. This biofilm-inhibiting or biofilm-disrupting activity was found in a range of extracts, molecules and biotechnologies on various bacterial biofilm models, such as marine, food and healthcare-related biofilms. Thus, Actinomycetes represent a rich source of antibiofilm compounds that await further investigation and clinical trials. The analysis of understudied Actinomycetes genera and the use of large-scale omics analysis have been shown as promising methods to overcome common limitations in natural products discovery. This work reports the first large-scale genomic and metabolomic analysis of the understudied actinomycetes genus Microbispora, with the aim of better understanding both its genome encoded and its metabolically expressed biosynthetic potential toward the discovery of new natural products. A large-scale genomic analysis was performed on a set of more than 120 Microbispora strains, showing the ecological and phylogenomic diversity of the strains. The genome-encoded biosynthetic potential was explored and revealed that the distribution of BGCs follows, at least in part, the phylogenomic relationship. Finally, interesting BGCs were explored and new class IV lanthipeptides discovered. In parallel, a large-scale metabolomic analysis was conducted on the set of Microbispora strains using cutting-edge dereplication and molecular networking tools to determine the best culture conditions as well as decipher known compounds and new congeners. A heatmap-based approach revealed the genus- and chemotype-specificity of molecules in Microbispora and allowed for the identification of “chemoprints” that were used to implement a high-accuracy metabolome-based genus prediction code. Overall, this work provides a frame for further studies in Microbispora and shows the potential for the discovery of natural products using large-scale paired omics approaches in understudied Actinomycetes genera.
Oggigiorno esistono diverse minacce contro la salute pubblica e ambientale, tra cui i biofilm e la resistenza agli antibiotici rendendo necessaria la scoperta di nuovi composti bioattivi. Fortunatamente, gli attinomiceti sono già stati identificati come ricche fonti di metaboliti bioattivi chimicamente diversi e unici. In questo lavoro, si viene esaminato in primo luogo il potenziale antibiofilm degli attinomiceti. Questa attività di inibizione o distruzione di biofilm è stata riscontrata in una serie di estratti, molecole e biotecnologie su vari modelli di biofilm batterici, come biofilm marini, alimentari e sanitari. Pertanto, gli attinomiceti rappresentano una ricca fonte di composti antibiofilm che attendono ulteriori caratterizzazioni e studi clinici. L'analisi di generi di attinomiceti poco studiati e l'uso di analisi omics su larga scala si sono dimostrati metodi promettenti per superare i limiti comuni nella scoperta di prodotti naturali. Questo lavoro costituisce la prima analisi genomica e metabolomica su larga scala di Microbispora, un genere poco studiato di attinomiceti, realizzata con l'obiettivo di comprendere meglio il suo potenziale biosintetico codificato nel genoma e quello espresso metabolicamente verso la scoperta di nuovi prodotti naturali. È stata eseguita un'analisi genomica su larga scala su una serie di oltre 120 ceppi di Microbispora, stabilendo la diversità ecologica e filogenomica dei ceppi. Il potenziale biosintetico genomico è stato esplorato e ha rivelato che la distribuzione dei clusters genici biosintetici (BGC) segue, almeno in parte, la relazione filogenomica. Infine, sono stati esplorati BGC di interesse e scoperti nuovi lantipeptidi di classe IV. Parallelamente, è stata condotta un’analisi metabolomica su larga scala su questa serie di ceppi di Microbispora utilizzando diversi strumenti di dereplicazione e networking molecolare per determinare le migliori condizioni di coltura e annotare composti noti e nuovi congeneri. Un approccio heatmap-based ha rivelato la specificità al livello di genere e di chemotipo delle molecole espresse in Microbispora e ha consentito l’identificazione di “chemoprints” utilizzate per implementare un codice di predizione del genere basato sul metaboloma, dimostrando un’ottima accuratezza. In conclusione, questo lavoro fornisce un quadro per ulteriori studi su Microbispora e mostra il potenziale per la scoperta di prodotti naturali di combinare tecnologie omics su larga scala in generi di attinomiceti poco studiati.
(2024). PAIRED OMICS STUDY OF MICROBISPORA, AN UNDEREXPLORED ACTINOMYCETE GENUS. (Tesi di dottorato, , 2024).
PAIRED OMICS STUDY OF MICROBISPORA, AN UNDEREXPLORED ACTINOMYCETE GENUS
VERNAY, THOMAS ALOYS PIERRE
2024
Abstract
Our modern societies face various threats to public and environmental health, among which bacterial biofilms and the emergence of antibiotic resistance call for the discovery of new bioactive compounds. Fortunately, Actinomycetes have already been identified as rich sources of chemically diverse and unique bioactive metabolites. In this work, we first review the antibiofilm potential of Actinomycetes. This biofilm-inhibiting or biofilm-disrupting activity was found in a range of extracts, molecules and biotechnologies on various bacterial biofilm models, such as marine, food and healthcare-related biofilms. Thus, Actinomycetes represent a rich source of antibiofilm compounds that await further investigation and clinical trials. The analysis of understudied Actinomycetes genera and the use of large-scale omics analysis have been shown as promising methods to overcome common limitations in natural products discovery. This work reports the first large-scale genomic and metabolomic analysis of the understudied actinomycetes genus Microbispora, with the aim of better understanding both its genome encoded and its metabolically expressed biosynthetic potential toward the discovery of new natural products. A large-scale genomic analysis was performed on a set of more than 120 Microbispora strains, showing the ecological and phylogenomic diversity of the strains. The genome-encoded biosynthetic potential was explored and revealed that the distribution of BGCs follows, at least in part, the phylogenomic relationship. Finally, interesting BGCs were explored and new class IV lanthipeptides discovered. In parallel, a large-scale metabolomic analysis was conducted on the set of Microbispora strains using cutting-edge dereplication and molecular networking tools to determine the best culture conditions as well as decipher known compounds and new congeners. A heatmap-based approach revealed the genus- and chemotype-specificity of molecules in Microbispora and allowed for the identification of “chemoprints” that were used to implement a high-accuracy metabolome-based genus prediction code. Overall, this work provides a frame for further studies in Microbispora and shows the potential for the discovery of natural products using large-scale paired omics approaches in understudied Actinomycetes genera.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_879128.pdf
embargo fino al 19/09/2026
Descrizione: PhD Thesis Thomas Vernay
Tipologia di allegato:
Doctoral thesis
Dimensione
12.53 MB
Formato
Adobe PDF
|
12.53 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.