The Betacoronavirus genus of mammal-infecting viruses includes three subgenera (Sarbecovirus, Embecovirus, and Merbecovirus), in which most known human coronaviruses, including SARS-CoV-2, cluster. Coronaviruses are prone to host shifts, with recombination and positive selection possibly contributing to their high zoonotic potential. We analyzed the role of these two forces in the evolution of viruses belonging to the Betacoronavirus genus. The results showed that recombination has been pervasive during sarbecovirus evolution, and it is more widespread in this subgenus compared to the other two. In both sarbecoviruses and merbecoviruses, recombination hotspots are clearly observed. Conversely, positive selection was a less prominent force in sarbecoviruses compared to embecoviruses and merbecoviruses and targeted distinct genomic regions in the three subgenera, with S being the major target in sarbecoviruses alone. Overall, the results herein indicate that Betacoronavirus subgenera evolved along different trajectories, which might recapitulate their host preferences or reflect the origins of the presently available coronavirus sequences.

Forni, D., Cagliani, R., Sironi, M. (2020). Recombination and Positive Selection Differentially Shaped the Diversity of Betacoronavirus Subgenera. VIRUSES, 12(11) [10.3390/v12111313].

Recombination and Positive Selection Differentially Shaped the Diversity of Betacoronavirus Subgenera

Sironi M
2020

Abstract

The Betacoronavirus genus of mammal-infecting viruses includes three subgenera (Sarbecovirus, Embecovirus, and Merbecovirus), in which most known human coronaviruses, including SARS-CoV-2, cluster. Coronaviruses are prone to host shifts, with recombination and positive selection possibly contributing to their high zoonotic potential. We analyzed the role of these two forces in the evolution of viruses belonging to the Betacoronavirus genus. The results showed that recombination has been pervasive during sarbecovirus evolution, and it is more widespread in this subgenus compared to the other two. In both sarbecoviruses and merbecoviruses, recombination hotspots are clearly observed. Conversely, positive selection was a less prominent force in sarbecoviruses compared to embecoviruses and merbecoviruses and targeted distinct genomic regions in the three subgenera, with S being the major target in sarbecoviruses alone. Overall, the results herein indicate that Betacoronavirus subgenera evolved along different trajectories, which might recapitulate their host preferences or reflect the origins of the presently available coronavirus sequences.
Articolo in rivista - Articolo scientifico
Betacoronavirus; Coronavirus; Genome evolution; Positive selection; Recombination; Virus evolution;
English
2020
12
11
1313
open
Forni, D., Cagliani, R., Sironi, M. (2020). Recombination and Positive Selection Differentially Shaped the Diversity of Betacoronavirus Subgenera. VIRUSES, 12(11) [10.3390/v12111313].
File in questo prodotto:
File Dimensione Formato  
Forni-2020-Viruses-VoR.pdf

accesso aperto

Descrizione: This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 552.16 kB
Formato Adobe PDF
552.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/510222
Citazioni
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
Social impact