Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes.

Mozzi, A., Biolatti, M., Cagliani, R., Forni, D., Dell'Oste, V., Pontremoli, C., et al. (2020). Past and ongoing adaptation of human cytomegalovirus to its host. PLOS PATHOGENS, 16(5), 1-33 [10.1371/journal.ppat.1008476].

Past and ongoing adaptation of human cytomegalovirus to its host

Sironi M
2020

Abstract

Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes.
Articolo in rivista - Articolo scientifico
Adaptation, Biological; Adaptation, Physiological; Animals; Biological Evolution; Cytomegalovirus; Cytomegalovirus Infections; Evolution, Molecular; Glycoproteins; Host Microbial Interactions; Humans; Phylogeny; Species Specificity; Viral Proteins
English
2020
16
5
1
33
e1008476
open
Mozzi, A., Biolatti, M., Cagliani, R., Forni, D., Dell'Oste, V., Pontremoli, C., et al. (2020). Past and ongoing adaptation of human cytomegalovirus to its host. PLOS PATHOGENS, 16(5), 1-33 [10.1371/journal.ppat.1008476].
File in questo prodotto:
File Dimensione Formato  
Mozzi-2020-PLoS Pathog-VoR.pdf

accesso aperto

Descrizione: This is an open access article distributed under the terms of the Creative Commons Attribution License
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 5.63 MB
Formato Adobe PDF
5.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/510200
Citazioni
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
Social impact